
ChainReactor: Automated Privilege Escalation Chain Discovery via AI Planning

Giulio De Pasquale1,4, Ilya Grishchenko2, Riccardo Iesari3, Gabriel Pizarro2, Lorenzo Cavallaro4,
Christopher Kruegel2, and Giovanni Vigna2

1King’s College London
2University of California, Santa Barbara

3Vrije Universiteit Amsterdam
4University College London

Abstract
Current academic vulnerability research predominantly fo-

cuses on identifying individual bugs and exploits in programs
and systems. However, this goes against the growing trend of
modern, advanced attacks that rely on a sequence of steps (i.e.,
a chain of exploits) to achieve their goals, often incorporating
individually benign actions. This paper introduces a novel ap-
proach to the automated discovery of such exploitation chains
using AI planning. In particular, we aim to discover privilege
escalation chains, some of the most critical and pervasive se-
curity threats, which involve exploiting vulnerabilities to gain
unauthorized access and control over systems. We implement
our approach as a tool, ChainReactor, that models the problem
as a sequence of actions to achieve privilege escalation from
the initial access to a target system. ChainReactor extracts
information about available executables, system configura-
tions, and known vulnerabilities on the target and encodes this
data into a Planning Domain Definition Language (PDDL)
problem. Using a modern planner, ChainReactor can generate
chains incorporating vulnerabilities and benign actions. We
evaluated ChainReactor on 3 synthetic vulnerable VMs, 504
real-world Amazon EC2 and 177 Digital Ocean instances,
demonstrating its capacity to rediscover known privilege esca-
lation exploits and identify new chains previously unreported.
Specifically, the evaluation showed that ChainReactor suc-
cessfully rediscovered the exploit chains in the Capture the
Flag (CTF) machines and identified zero-day chains on 16
Amazon EC2 and 4 Digital Ocean VMs.

1 Introduction

Current vulnerability research focuses on identifying indi-
vidual security bugs in the ever-evolving cybersecurity land-
scape. Several state-of-the-art techniques are employed in this
endeavor. Fuzzing [17, 37], for instance, involves providing
inputs to a program to detect various vulnerabilities. It is an
automated process that can quickly cover a large code base
and discover flaws that might be overlooked during manual

testing. Symbolic execution [4] is another vulnerability de-
tection technique that systematically explores feasible paths
of a program by treating inputs as symbolic values instead
of concrete ones. This method effectively uncovers edge-
case vulnerabilities by considering heavily guarded execution
paths, thus identifying non-trivial conditions that could lead
to a security breach. Static analysis [8], both for source code
and binaries, is also widely used in vulnerability detection.
This approach examines code without executing it to find
problematic coding patterns, insecure coding practices, and
other potential sources of vulnerabilities.

While some vulnerabilities, such as those in the Linux ker-
nel, can offer an attacker complete control over a system,
others are less severe. The presence of a vulnerability does
not necessarily translate into a severe threat, as the implemen-
tation of anti-exploitation techniques might counterbalance
its potential impact. These techniques, such as Control Flow
Integrity (CFI) [6] or Address Space Layout Randomization
(ASLR) [66], restrict how an attacker can exploit a discovered
bug, thus limiting potential damage. Therefore, in modern
exploitation scenarios, a single vulnerability may not be suffi-
cient to achieve the attacker’s objectives. Security competi-
tions and research efforts targeting real-world software, like
Pwn2Own [30] and Google Project Zero [22], highlight the
need to develop multi-step exploits.

These steps form a chain where each link, though not nec-
essarily exploiting a critical vulnerability, contributes to the
system’s eventual corruption. Consequently, the significance
of each vulnerability is assessed not merely by the additional
attacker capabilities it provides but by its role within the
exploitation chain. This includes the number of additional
exploits it enables and its contribution to moving the attacker
closer to the final step in the desired chain. Furthermore,
within the context of an exploitation chain, some benign ac-
tions may be necessary for the attacker to get closer to reach-
ing their exploitation goals.

A simple example of the chaining of two vulnerabilities was
demonstrated at the Pwn2Own Vancouver event in 2023 [73].
In this case, the attack used an uninitialized variable bug



(CVE-2023-20870 [47]) and a stack-based buffer overflow
(CVE-2023-20869 [46]) in VMware Workstation to escalate
from a guest OS and execute code in the underlying hypervi-
sor. The first vulnerability involved the misuse of an uninitial-
ized variable within VMware’s virtual Bluetooth USB device,
leading to an information leak. The second exploit took ad-
vantage of a stack-based overflow in the Service Discovery
Protocol (SDP) – a feature of the same virtual Bluetooth USB
device. Combined, these vulnerabilities allowed the execu-
tion of arbitrary code from the guest OS in the context of the
hypervisor. This instance illustrates the concept of exploit
chains, where multiple vulnerabilities are exploited in a se-
quence to achieve an attacker’s goal, underscoring the need
for our approach to automated exploit chain identification.

Currently, the identification of exploitation chains is mostly
a manual process. However, the complexity of modern oper-
ating systems and execution environments might hide subtle
interactions among their components, making it a daunting
task for an expert to discern the most suitable path among the
myriad possibilities.

To address this issue, we present a systematic approach to
automated exploitation chain identification in this paper. Our
approach is a classical AI planning problem, encoding the
system’s initial state (pre-attack) and the goal state (specify-
ing the attacker’s objectives). To extract chains, we automate
gathering information about the capabilities available to the
attacker on the target system. These capabilities represent
the possible actions an attacker can perform on the system,
from executing specific commands (e.g., downloading con-
tent, reading or writing files, and linking specific libraries) to
manipulating system configurations or exploiting vulnerable
binaries (e.g., binaries with assigned Common Vulnerabilities
and Exposures (CVE) numbers [41]). In addition to identi-
fying the presence of standard system binaries (e.g., cp), we
employ GTFOBins [54], a database that associates specific
system binaries with their potential roles in post-exploitation
activities (e.g., downloading content). We automatically iden-
tify other aspects of system interactions, such as manipulating
incorrect permissions in file configurations and system ser-
vices, which could further expand the attacker’s capabilities.

After obtaining the capabilities, we encode them into the
initial state of the planning problem as facts. This is done by
defining a specific predicate for each capability type and in-
stantiating it. Then, for our planning problem, we select as the
goal state the attacker’s ability, starting from an unprivileged
shell, to gain complete control of the system (i.e., obtaining a
root shell) or obtain a shell as another user with higher priv-
ileges. ChainReactor does not focus on any particular kind
of privilege escalation chain, as the specific instantiation is
decided by the planner, which combines the actions based
on the facts provided initially, or derived by applying other
actions. For instance, if the system has misconfigured permis-
sions, they might be used in the exploit chain, but the planner
is not forced to use them.

In this paper, we make the following contributions:

• We introduce the first automated approach for exploit
chain discovery based on AI planning.

• We develop a novel method for automated extraction of
system programs and configurations, translating them
into a format that AI planners can reason with.

• We evaluate ChainReactor on a benchmark of 3 known
VMs with privilege escalation bugs and then proceed
to test it on 504 Amazon EC2 and 177 Digital Ocean
instances as real-world scenarios, identifying 16 and 4
zero-day chains as plans, respectively.

• Lastly, we demonstrate how we can transform the plan-
ner’s outputs into operational exploitation sequences,
obtaining working exploits for all chains that ChainRe-
actor discovered.

2 Background

2.1 Privilege Escalation
Privilege escalation involves exploiting a bug, design flaw, or
configuration oversight in an operating system or software ap-
plication to gain elevated access to resources that are typically
protected from (unavailable to) an unprivileged application
or user. This can occur in two forms: horizontal privilege
escalation, where a user gains the privileges of another user,
and vertical privilege escalation, where a user with lower priv-
ileges can obtain higher privileges, usually those of a system
administrator, also referred to as root.

2.2 Planning
Planning Domain Definition Language (PDDL), an expres-
sive language that describes planning domains and problems
has become a standard input for AI planners – solvers that
generate sequences of actions to transition from an initial
state to a goal state [18].

The strength of these AI planners lies in their ability to
efficiently search an ample space of possible states and actions
to find an optimal (or, at least, satisfactory) plan. PDDL’s
structure is split into domain and problem files, ensuring a
clear distinction between universal problem space aspects and
individual problem instance specifics. In the context of our
research, this design facilitates the modeling of Unix systems
(e.g., user permissions, file hierarchy) and the encoding of
attacker goals as problem files, highlighting the potential of
AI planners as tools for security analysis.

The domain file, serving as a blueprint of the problem space,
describes the types of entities or objects in the domain, cate-
gorizing them into different classes. These objects, ranging
from tangible entities such as robots or tools to abstract con-
cepts such as tasks or states, are instances of specific types



defined within the domain file. In our domain, the entities
include system users, groups, different types of files - includ-
ing executables and directories - and file system permissions.
Complementing the objects in the domain file are predicates,
representing properties or relationships between the objects.
Predicates, essentially Boolean functions, return true or false,
depending on the state of the objects they refer to. For in-
stance, a predicate could be (user_group ?user ?group),
which is true if the user ?user is part of the group ?group, i.e.,
there is an instantiation with concrete objects replacing ?user
and ?group parameters that make the predicate true. The do-
main file further defines the actions or operators that can be
performed within the domain. Each action is described in
terms of its parameters, preconditions, and effects. Precondi-
tions, often expressed in terms of predicates, specify the condi-
tions for executing the action. At the same time, the effects de-
scribe how the action modifies the truth values of certain pred-
icates. Considering an action whose goal is to write to a file, a
precondition could be (executable_can_write_to_file
?executable ?file), which needs to be true for an exe-
cutable ?executable to be able to write to a file ?file.

In contrast, the problem file specifies a particular problem
instance within the defined domain. It provides a concrete
definition of the initial state of the domain, describing which
predicates are true and false at the beginning of the planning
process. The problem file also defines the objects and goal
state, usually expressed as a conjunction of predicates, speci-
fying the conditions that must be met to solve the problem.

Together, the domain and problem files form a comprehen-
sive and flexible framework for defining problems in PDDL.
The domain file provides the general structure and rules of
the problem space, while the problem file offers the specific
details of the problem instance.

3 Motivation & Threat Model

An exploitation chain is necessary when achieving an at-
tacker’s goal requires multiple steps. This often occurs when
the initial access to a system is limited, necessitating a series
of actions to compromise the system. In this process, the at-
tacker leverages a combination of specific vulnerabilities and
generic system capabilities. These generic system capabili-
ties - such as file access permissions - are integral building
blocks for system interaction. Unlike vulnerabilities, which
introduce additional or unexpected capabilities, these system
capabilities are consistently present and fundamental to the
system’s operation. These inherent capabilities can provide an
attacker with other avenues for exploitation, making them a
crucial component of the exploitation chain where every step
is designed to escalate privileges or gain additional access,
building on the foothold established by the previous step.

3.1 Motivating Example
We present the scenario outlined in Figure 1 to highlight the
necessity of chaining vulnerabilities for effective privilege
escalation. This scenario is inspired by findings in our exper-
imental evaluation, which revealed multiple Linux systems
with CVE-affected binaries and misconfigurations.

Initial Access

Enable CVE Preconditions

Exploit CVE-2022-2068

Corrupt systemd Service

Root Access

Figure 1: Exploitation steps for the motivating example.

The system in our scenario comprises three users: Alice,
openssl, and root. Initially, the attacker controls Alice’s ac-
count, a basic user account without any special privileges. The
goal of the attacker is to obtain root access. In our scenario,
the attacker first targets CVE-2022-2068 [44]. This OpenSSL
vulnerability arises from the application’s failure to properly
sanitize shell meta-characters in the file names of certificates
being hashed. Under normal circumstances, these files are not
directly accessible to non-privileged users, but through a mis-
configuration, an attacker might inject malicious content into
these file names. After exploiting the OpenSSL vulnerability,
the attacker leverages their newly-gained privileges to tamper
with a system service file, enabling them to execute code as
root. The following discussion describes the steps needed to
exploit the system in more detail:

1. Enabling CVE Preconditions The first finding is a mis-
configuration of the directory /etc/certs/, inadver-
tently set to allow write permissions for non-privileged
users. Non-privileged users, such as the account con-
trolled by the attacker (Alice), should be unable to write
or modify files in this directory. This misconfiguration is
important because CVE-2022-2068 requires the attacker
to feed maliciously crafted file names to OpenSSL. A
non-privileged user typically cannot perform this action,
due to restricted access to the relevant directories where
OpenSSL processes certificate files. By identifying and
exploiting this misconfiguration, the attacker can place
maliciously crafted files within /etc/certs/, creating
the necessary precondition for successfully exploiting
CVE-2022-2068.

2. Exploiting CVE-2022-2068 Using the ability to write
to the /etc/certs/ directory, the attacker moves



to exploiting CVE-2022-2068. To this end, they
place maliciously-crafted certificate file names in the
/etc/certs/ directory and then trigger the c_rehash
script, which is executed by the openssl user. This script,
failing to sanitize shell meta-characters in the file names
properly, executes the attacker’s code with the privileges
of the openssl user.

3. Corrupting a systemd Service For the third step, the
attacker uncovers another misconfiguration: Specifically,
the openssl user has permission to modify systemd ser-
vice files. This misconfiguration arises from the fact
that systemd service files are incorrectly associated with
an administrative group with write permissions to these
files, and the openssl user is a part of that group. This is
not a standard configuration but a possible setup where
an admin group is used to manage a variety of system
services. The attacker uses this misconfiguration (and the
fact that they can run code as the openssl user) to inject
a malicious modification into the systemd service file.
Since the service file runs with root privileges when the
system or the service is restarted, the modified service
file executes code or commands inserted by the attacker.
This effectively allows the attacker to escalate their priv-
ileges to root, granting them complete control over the
system.

The exploitation chain highlighted in this scenario lever-
ages a combination of three distinct security issues: the pres-
ence of misconfigured directory permissions, the exploitation
of a known vulnerability (CVE), and finally, the manipulation
of a systemd service for the final escalation to root.
Problem Size. The current approach to finding privilege es-
calation chains requires the manual composition of each step.
Some of these steps can be identified by tools such as lin-
PEAS [56] that perform system analysis and report poten-
tial vulnerabilities. However, the end-to-end analysis must
navigate a vast search space to discover privilege escalation
chains automatically. For the exploitation chain we discuss
in this section, the analysis must explore millions of possi-
ble states, even on basic Linux installations. This complexity
is beyond simple brute-force exploration, but different opti-
mized search algorithms can address it. However, any search
strategy will require a flexible and extensible mechanism to
encode a problem and must support diverse exploitation prim-
itives and attacker goals. We find that PDDL (discussed in
Section 2) is a powerful encoding mechanism that enables
us to express problems generically. Moreover, it allows us to
directly leverage state-of-the-art search algorithms integral to
AI planners.

3.2 Threat Model
ChainReactor operates on the premise that the attacker aims to
elevate their initial shell access. Methods for securing initial

PDDL
Problem

Encoder

Extractor

System
Info

Target
Planner PDDL

Domain

Figure 2: ChainReactor architectural overview.

access vary, ranging from exploiting remote vulnerabilities
for service-user access to using stolen credentials for user
login.

The attacker’s initial capabilities are limited to using the
executables present on the system. However, they can retrieve
external tools to aid in the exploitation process if they find
a way, with no specific constraints on these tools. The at-
tacker does not know about the system architecture or the
software running on the machine. However, they can gather
this information using the tools available on the system.

Our research primarily focuses on Unix systems, specifi-
cally those fully-fledged and equipped with init systems. This
current focus is not a fundamental limitation of ChainReactor
but rather a design choice to obtain more intricate chains, as
init systems (such as [19]) facilitate the automatic execution
of routine scripts and executables. Due to this emphasis on init
systems, our threat model does not encompass containerized
environments.

Moreover, we assume that the attacker initially does not
have access to any of the other users’ passwords, which rules
out the straightforward approach of using privileged com-
mands through the system’s built-in permission elevation
mechanisms, e.g., using SUDO to assume the identity of an-
other user or log in as that user. However, attackers can exploit
known vulnerabilities, e.g., CVEs, to incrementally increase
their capabilities.

Furthermore, this work aims to discover privilege escala-
tion chains. It is not limited to any particular kind of privilege
escalation chain, as its type (and the involved steps) are de-
cided by automated analysis that combines the actions the
attacker can perform on the target system. For example, if
there are misconfigured permissions within the system, the
planner decides whether to leverage them in the exploit chain.

4 Approach

ChainReactor is built from three main components: the ex-
tractor, the encoder, and the domain. The extractor identifies
potential vulnerabilities and generic capabilities within the tar-
get system. The encoder then converts these capabilities and
vulnerabilities into facts formatted in the Planning Domain
Definition Language (PDDL). As described in Section 2, the
PDDL domain outlines the possible actions that the system



can perform, and PDDL problem defines the initial state of
the system and the goal state to be achieved. ChainReactor
then uses an AI planner to solve the problem, the sequence of
actions that brings the system from the initial state to the goal
state. This sequence is a plan corresponding to an exploitation
chain. A visual representation of this system can be found in
Figure 2. The following sections delve into the specifics of
each component.

4.1 Extractor
The extractor is run on the target system under the unprivi-
leged account that the attacker controls according to our threat
model discussed in Subsection 3.2. Operating as an unprivi-
leged user, the extractor examines the target system. The tasks
performed by the extractor can be categorized into two groups:
(1) enumeration of generic capabilities and (2) extraction of
vulnerabilities.
Generic Capabilities. To obtain a chain, we require not only
knowledge about a system’s vulnerabilities but also generic
information about it. As part of generic capabilities extraction,
our system performs the following tasks:

• Retrieving System Users and Groups: Identifies all users
and groups on the target system, providing an initial un-
derstanding of potential users and groups that an attacker
could exploit.

• Retrieving System Executables: Identifies all executable
programs on the system, including both binary ELF exe-
cutables and scripts (e.g., shell, Python, and Perl scripts).

• Retrieving Linked System Libraries: Identifies all li-
braries automatically loaded by the system executables
extracted in the process. This is done to find libraries
with incorrect permissions that could be later corrupted.

• Retrieving Writable Files and Directories: Scans for files
and directories to which the unprivileged user has write
access, emphasizing those not owned by this user, as
they may facilitate exploitation.

• Retrieving SUID / SGID Files: Identifies all executables
for which the SetUID or SetGID bit is set. When exe-
cuted, such programs run with the permissions of the
file owner or group and could be exploited for privilege
escalation.

• Retrieving RC files: Identifies all bash .rc files automat-
ically sourced by shells upon login. If writable, these
files can execute arbitrary code as other users.

• Collecting File Ownership and Permissions: For ev-
ery file identified on the system, including executables,
scripts, and libraries, the extractor collects information
regarding file ownership and permissions. This metadata

is crucial for understanding potential security vulnerabil-
ities and access control across the system.

• Retrieving Background Processes: Extracts which pro-
cess is executed by which user. If the process has a
vulnerability, this information determines the affected
user.

Vulnerabilities. Together with generic capabilities, the extrac-
tor also checks for known software vulnerabilities, providing
the attacker with additional capabilities on the target system.
In particular, the vulnerability extraction includes:

• Retrieving misconfigured systemd services and cron-
jobs: This step identifies all systemd [19] services and
cronjobs [38] running on the system. Misconfigured
or vulnerable services and jobs could be exploited to
manipulate the system’s operations, e.g., to execute a
malicious script. Misconfigurations are primarily identi-
fied by inspecting configuration file permissions.

• Mapping Executables to Capabilities Using GTFOBins:
In this step, we leverage GTFOBins [54], a curated
database that links specific system binaries to potential
post-exploitation tasks. By cross-referencing the executa-
bles present on the system with the GTFOBins database,
we can identify the potential capabilities that each bi-
nary could be used for, such as reading or writing files
or downloading content.

• Retrieving Fine-Grained Version Information of Bina-
ries: This phase first identifies the CVEs associated with
the binaries by utilizing the cve-bin-tool [12]. Subse-
quently, we access fine-grained data regarding the ver-
sion and patch status of each program installed using
Ubuntu’s CVE API [75]. This approach allows us to
ascertain whether a system’s version has been patched in
an Ubuntu image. Armed with this precise information,
we can efficiently identify vulnerable programs (CVEs)
on Linux Ubuntu distributions.

4.2 Encoder
The encoder is responsible for translating the raw data gath-
ered by the extractor into PDDL format, specifically into
PDDL problems discussed in Subsection 2.2. These and the
domain files constitute the input for the AI planner.

The data received by the encoder holds a comprehensive
collection of information about the target system, i.e., generic
capabilities and vulnerabilities described in Subsection 4.1.
Acting as a translator, the encoder converts this collection into
corresponding PDDL objects and predicates.

4.2.1 Encoding Generic Capabilities

The encoder parses the generic capabilities provided by the
extractor and maps them to one or more facts. These facts



could include the capability of reading or writing a file (e.g.,
(cap_write_file usr_bin_busybox), Figure 3, Line 4),
downloading or uploading a file, executing a shell command,
present system executables (e.g., (system_executable
usr_bin_busybox), Figure 3, Line 11) and more. Facts re-
flect properties of the current system state, such as users,
groups, files, file permissions, executables periodically called
by users, daemon files, and cross-references between executa-
bles and libraries.

4.2.2 Encoding CVEs

We adopt a two-step strategy to enhance ChainReactor by
integrating information from the Common Vulnerabilities and
Exposures (CVE) database.

First, we manually added support for GTFObin(aries) and
11 CVEs to ChainReactor. The effort involved in adding a
new vulnerability or CVE is twofold. First, we need to define
the effects of exploiting a CVE on the system state and the
attacker’s capabilities. Then, we need to translate these effects
into predicates (discussed in Subsection 2.2) that the planner
understands. If the effects of exploiting a CVE introduce new
capabilities that are not currently covered by the domain, we
need to introduce new predicates. This process is manual
and requires an understanding of the CVE and the domain.
Still, it allows us to gradually build up a library of CVEs and
associated predicates over time.

Let’s consider CVE-2022-1271 [43] that we added to
ChainReactor as an example. This CVE enables GZIP to write
files arbitrarily. The encoder maps this CVE to a predicate,
CAP_CVE_write_any_file, which signifies this capability
within the PDDL problem. This mapping informs the planner
that if this particular CVE is exploited, then GZIP can be
used to write any file to which the user executing GZIP has
permission. This effectively extends the writing capabilities
of the executable, which may not have been possible without
the exploitation of the CVE.

While performing a manual study of CVEs commonly
found on recent Linux distributions, we noticed that these
vulnerabilities fall into a (small) number of categories that
provide similar capabilities to attackers when exploited. For
example, exploiting a CVE might allow the attacker to exe-
cute arbitrary code as the vulnerable application’s user. As
another example, the attacker might be able to overwrite files
for which they do not have permissions.

Therefore, in the second step, we develop an automated
system that can label a given CVE based on the capabilities
this vulnerability provides to an attacker (assuming they can
successfully exploit it). This approach enables us to encode
(in PDDL) the effects of exploiting any CVE for which we can
determine a label. This significantly streamlines the process
of modeling and incorporating CVEs into our tool.

To facilitate this labeling, we have developed a classifier
using GPT-4 Turbo [50]. For a given CVE number, our sys-

1 (define (problem micronix-problem-root)
2 (:objects etc_systemd_system_calyptia_service

- file usr_bin_busybox - executable
ubuntu_u - user ubuntu_g - group root_u -
user root_g - group)

3 (:init
4 (cap_write_file usr_bin_busybox)
5 (controlled_user ubuntu_u)
6 (daemon_file

etc_systemd_system_calyptia_service)
7 (default_file_permission

etc_systemd_system_calyptia_service
FS_READ)

8 (executable_systematically_called_by
opt_calyptia-core_bin_core-start_sh
root_u)

9 (file_owner
etc_systemd_system_calyptia_service
ubuntu_u ubuntu_g)

10 (file_owner usr_bin_busybox root_u root_g)
11 (system_executable usr_bin_busybox)
12 (user_group root_u root_g)
13 (user_group ubuntu_u ubuntu_g)
14 (user_is_admin root_u)
15 ; more facts...
16 )
17 (:goal (controlled_user root_u)))

Figure 3: Simplified example of a PDDL problem file gener-
ated by the Encoder component of ChainReactor.

tem first recovers the full CVE description from the National
Vulnerability Database (NVD) [42]. Subsequently, the de-
scription is included in a prompt that is sent to GPT-4 (via
OpenAI APIs [49]). This prompt is written such that it asks
GPT-4 to assume the role of a security engineer and assign a
label to the CVE description. To ensure consistency between
different vulnerabilities, we have defined several different la-
bels (categories), and the prompt includes these labels. The
prompt also includes information on what to do in case it is
not possible to perform any assignment.

4.2.3 Encoding Example

We use a simplified problem description presented in Figure 3
to exemplify the workings of the encoder. The problem file,
automatically generated first by running the Extractor and
then the Encoder, consists of three parts: objects – constants
used in the predicates (Line 2), init – initial state description
(Lines 3-15), and goal – goal state description (Line 17).
Problem objects. The objects defined within the domain
represent the entities involved in the problem space, such as
the files, users, and executables on the system. Their attributes
and relationships dictate the possible actions and the state
transitions within the problem scenario.
Initial State. In the initial state description, the encoder puts
all the identified objects into facts, i.e., each fact is a predicate
instantiation as discussed in Subsection 2.2. To accomplish



this, we equip the encoder with an extendable capability-
predicate database. Currently, our database consists of 45
predicates, allowing us to describe information about the sys-
tem as facts, as we exemplify in the following paragraphs.

A fact with predicate cap_write_file (Line 4) is intro-
duced if the extractor finds an executable capable of writing
files. In our example, /usr/bin/busybox was used to in-
stantiate the predicate and also introduced as an object of
type executable (Line 2). Together, they express that there
is a binary in the system capable of writing files. The same
executable (busybox) is also a system executable, which is
expressed by the predicate system_executable (Line 11).

Our system also manages executables periodi-
cally invoked by a system’s service, indicated by the
predicate executable_systematically_called_by.
In our example, the name of the executable is
/opt/calyptia-core/bin/start.sh, executed with
the privileges of the user root_u (Line 8).

We also model the file system, generating the cor-
responding facts for file ownership and permissions,
among others. For instance, the executable discussed above
(/usr/bin/busybox) is owned by the user and group
root_u:root_g (Line 10). To map the association between
a user and a group, the encoder generates the predicate
user_group (Line 12). In addition to ownership, we also
capture the facts about the permissions, e.g., for a daemon
configuration file (Line 6); on this specific system, we gener-
ate the fact that the file is read-only (Line 7).

According to our threat model introduced in Subsection 3.2,
the system under analysis has an (unprivileged) user con-
trolled by the attacker. In our example, this user is called
ubuntu_u, which is captured by a fact with the predicate
controlled_user (Line 5). We also extract the fact that the
admin of the system is the user root_u (Line 14).
Goal State. The goal state for the PDDL problems generated
by the encoder is currently predefined. Specifically, the at-
tacker aims to become the root user, represented by the fact
controlled_user root_u (Line 17). However, in principle,
our system supports other goals, such as data exfiltration.

4.3 Domain & Plan
In Subsection 4.2, we discussed how the encoder produces
facts instantiating predicates with objects to obtain a PDDL
problem description. As discussed in Subsection 2.2, AI
planning also requires another component, namely, domain
specification. The PDDL domain is manually developed
and includes the predicates’ definitions. These predicates
are defined in the PDDL domain description. Figure 4 con-
tains examples of such predicate definitions, namely, pred-
icates cap_write_file (Line 2) and system_executable
(Line 3). Predicate specification tells us that instantiation for
both predicates requires one element of type executable,
and this is how they are used by the encoder (Figure 3, Line 4

and Line 11, respectively).
Next, the domain encompasses the description of the plan-

ner’s possible actions to bring the target system from the
initial state in the problem description to the goal state. As
described in Subsection 2.2, each action contains typed pa-
rameters, which can be used in both the predicates and the
effects, preconditions describing the conditions that needed
to be satisfied to apply the action, and effects describing the
outcome of the application of an action. We formulated the ac-
tions to correspond with the specific commands or sequences
of commands executed during the development of the multi-
stage exploit.

We depict example actions in Figure 4. The first action
write_data_to_file (Lines 6-16) allows the planner to
write to a file (specified by the parameter ?f) as a step in
the attack sequence. To execute the action, there must be
an executable ?e in the target system that can write to files
(Line 10), and it should be spawned as process ?p (Line 11)
by a user ?u with the rights allowing them to write to the file
?f (Line 12). In addition, the file ?f that we write to must be
different from the executable ?e used to write to a file. If the
planner finds in the init state or can derive – by replacing the
parameters with the objects – the facts in the preconditions,
the action can be executed as a part of the plan. Executing this
action leads to the introduction of the effects. In particular,
the process ?p that writes to a file will no longer be active
(Line 14), and file ?f can be moved to location ?l of choice
with data ?d. It is important to note that the planner chooses
the location and the data. Hence, if there is a precondition
that can be satisfied if file ?f is present at location ?l with
data ?d, the planner can use action write_data_to_file to
obtain it.

Figure 4 also contains another example action, namely,
spawn_injected_shell_from_corrupted_daemon
(Lines 17-23). It has two preconditions: there should be a
daemon ?f present on the target (Line 20), and the contents
of this daemon should contain the attacker-introduced
shellcode (Line 21). As the extractor establishes the daemon’s
presence, the first precondition must be part of the initial state
specification. But the second precondition can be derived,
for instance, by the previous action write_data_to_file
application. If both preconditions are satisfied, the effect
would be for the attacker to control any user ?u (Line 23).
Thus, this action can be the last step in achieving privilege
escalation.

Here, we just highlighted a couple of actions. Our domain
specification contains 30 more actions, providing the planner
with additional steps that it can use to achieve privilege es-
calation, e.g., manipulating sensitive files or exploiting the
CVEs. This comprehensive approach ensures our system can
leverage known vulnerabilities while discovering new ex-
ploit combinations. The process of establishing the domain
requires a one-time effort. Once accomplished, it can be itera-
tively utilized to tackle a variety of problem instances, with



1 (:predicates
2 (CAP_write_file ?e - executable)
3 (system_executable ?e - executable)
4 ; ... more predicates
5 )
6 (:action write_data_to_file
7 :parameters (?p - process ?e - executable ?f -

file ?d - data ?l - local ?u - user ?g -
group)

8 :precondition (and
9 (not (= ?e ?f))

10 (CAP_write_file ?e)
11 (process_executable ?p ?u ?e)
12 (user_can_write_file ?u ?g ?f))
13 :effect (and
14 (not (process_executable ?p ?u ?e))
15 (file_present_at_location ?f ?l)
16 (file_contents ?f ?d)))
17 (:action

spawn_injected_shell_from_corrupted_daemon
18 :parameters (?u - user ?f - file)
19 :precondition (and
20 (daemon_file ?f)
21 (file_contents ?f SHELL))
22 :effect (and
23 (controlled_user ?u)))

Figure 4: Examples of PDDL predicates and actions in the
domain description used by ChainReactor.

arbitrary attack objectives expressed through the designated
predicates. Furthermore, the extensibility of the domain is
facilitated, accommodating the inclusion of additional predi-
cates to address previously unsupported capabilities or actions
representing novel steps in the attack sequence.

The combined specifications of the domain and problem
(detailed in Subsection 4.2) constitute a valid input for a plan-
ner. Once a plan is obtained, it guides the construction of the
multi-stage attack. Given that the actions are meticulously
aligned with specific commands or sequences, it is plausible
to establish a one-to-one correspondence between the plan
and the actual attack sequence.

5 Implementation

In this section, we discuss the implementation of ChainReac-
tor, providing some implementation details about the extractor
and planner components.
Extractor. The extractor serves as the initial data collection
point and is responsible for gleaning necessary information
about the system stat, it is fully automated. We developed the
extractor in PYTHON. It collects required data through SSH or
reverse-shell communication with instances and the execution
of a series of commands. We considered leveraging tools like
LinPEAS [56] in our Extractor component. We ultimately
decided to implement our version, as it provided additional
configuration and vulnerability data and was tailored to our

exact use case. A crucial function of the extractor is the iden-
tification of Common Vulnerabilities and Exposures (CVEs)
discussed in Subsubsection 4.2.2. After extracting the CVEs
from a target, we associate these CVEs with a class, obtaining
a domain that links a CVE class with its effects.
Planner. The critical observation is that the Extractor compo-
nent (as well as existing vulnerability checkers) only provide
basic facts about the system. ChainReactor adds the crucial
step where we can reason about combinations of these basic
facts to achieve generic multi-stage exploit chains. This is not
possible with current tools. To implement this combination
step, ChainReactor incorporates an off-the-shelf AI planner
that resolves the generated PDDL problem. The planner gen-
erates a sequence of actions progressing from the initial to the
goal state, thereby constructing an exploitation chain. How-
ever, it’s crucial to note that the planner does not enumerate
all possible plans. Instead, it employs a satisficing strategy, de-
termining the conditions that must be met or the information
that must be obtained to reach a satisfactory decision. Once a
solution is identified, the planner then focuses on optimizing
the cost of that specific solution rather than seeking alterna-
tive solutions. If no solution is found, the system is informed
accordingly, and the scenario is marked as such.

We utilized Powerlifted, a lifted PDDL planner [14] to
enable effective reasoning and planning. Lifted planners oper-
ate using abstract representations with objects and potential
states, dynamically grounding details during the search pro-
cess as needed. They work directly on the abstract domain
model without fully grounding specific instances and sce-
narios. This approach eliminates the need for an expensive
pre-processing phase and prevents excessive memory usage,
which is particularly beneficial when dealing with large state
spaces.

The multitude of objects in our domain results from our
automatic system information extraction. This leads to a vast
state space, making the grounding process extremely expen-
sive and causing an exponential blow-up even before the solv-
ing starts. Therefore, while grounded planners might offer
faster search times under certain conditions, a lifted planner
is necessary to scale to our automatically generated problems
and manage the complexity of our domain.

6 Evaluation

The evaluation of ChainReactor was conducted in a two-stage
process to ensure its effectiveness and applicability. The first
stage involved testing synthetic environments, specifically
vulnerable Capture-The-Flag (CTF) Virtual Machines (VMs)
published for educational purposes. The second stage aimed
at a real-world scenario, evaluating the performance of our
system on Amazon Web Services EC2 (AWS) and Digital
Ocean (DO) instances.

Our experiments were performed on an Ubuntu 22.04 LTS



1 1: (derive_user_can_execute_file apache_u apache_g usr_bin_vim )
2 2: (derive_user_can_execute_file apache_u apache_g opt_my_backup_sh )
3 3: (derive_user_can_write_file apache_u apache_g opt_my_backup_sh )
4 4: (spawn_process apache_u apache_g usr_bin_vim process )
5 5: (write_data_to_file process usr_bin_vim opt_my_backup_sh shell local apache_u apache_g )
6 6: (spawn_injected_shell_from executable_systematically_called_by_user apache_u root_u apache_g

opt_my_backup_sh process )

Figure 5: Plan generated for the CTF VM.

server running on an Intel Xeon CPU E5-2690 3.00GHz with
256GB of RAM. Notably, the PDDL solving process is single-
threaded and not CPU-intensive but memory-intensive. The
significant RAM capacity allowed batches of 8-9 problem
instances to be solved simultaneously [71], and the number of
concurrent solver processes was tuned to saturate the available
memory for maximum efficiency. The evaluation used a 30-
minute overall limit for each planning task.

6.1 CTF VMs

In the first stage, we tested ChainReactor on 3 CTF VMs from
a curated list designed explicitly for privilege escalation [72].
These VMs, inherently vulnerable, served as a controlled en-
vironment to assess ChainReactor’s ability to identify and
exploit vulnerabilities. We started with a hands-on approach
of manually identifying privilege escalation paths by follow-
ing published walkthroughs and conducting independent in-
vestigations; the walkthroughs served as both a guide and
a baseline to measure ChainReactor’s ability to detect and
exploit vulnerabilities.

This process allowed us to understand the various privilege
escalation methodologies commonly used by attackers and
identify privilege escalation chains in these controlled settings,
demonstrating ChainReactor’s ability to detect vulnerabilities
and formulate effective escalation paths accurately. Miscon-
figured SetUID binaries and writeable scripts periodically
called by other users were among the most common attack
vectors identified in these VMs.

The plan in Figure 5 outlines a sequence of actions that
result in a privilege escalation on the CTF VM “Escalate My
Privileges“ [76]. We consider two users in this scenario: the
unprivileged apache user, which we control, and the root
user.

The exploitation chain begins with Line 1 and Line 2,
where the planner identifies that the apache user, a mem-
ber of the apache group, possesses execution rights for vim
and a script located at opt/my_backup.sh. In Line 3, the
planner establishes that the apache user has write permis-
sions on opt/my_backup.sh. Next, in Line 4, the planner
launches a vim process under the apache user. In Line 5,
the planner leverages the write permissions of apache on
opt/my_backup.sh to inject shellcode into the script. Fi-
nally, in Line 6, the corrupted opt/my_backup.sh script is

automatically invoked as part of a cronjob, leading to the
execution of the injected shellcode.

The security bug in this scenario is that the backup script,
opt/my_backup.sh, is both writable and executable by the
unprivileged apache user. Yet, it is scheduled to run under
administrative privileges. This vulnerability is what allows
the escalation of privileges to occur.

6.2 AWS EC2 and Digital Ocean Instances
In the second stage of the evaluation, ChainReactor analyzed
cloud-hosted instances to understand how our tool performs
under conditions representative of typical real-world use cases.
We tested 504 Amazon Web Service EC2 (AWS) and 177 Dig-
ital Ocean (DO) droplet instances of available Linux images.
Setup. Both official and customized marketplace images were
included to provide diversity in software configurations. We
retrieved image lists from Amazon’s and Digital Ocean’s APIs
(describe_images and doctl compute image list). We
used the entire Digital Ocean list and a random subset of
the AWS images for our testing. Importantly, it should be
noted that no modifications were made to these instances
after spawning. The instance sizes were t2.micro on AWS
and s-4vcpu-8gb on Digital Ocean. Additionally, port 22
was exposed.

We established SSH access using the default unprivi-
leged user for each instance to simulate the attacker’s initial
foothold. It is crucial to highlight that in this scenario, we
assumed the default user does not have sudo (ALL:ALL) per-
missions and that the user and root passwords are unknown.
Exploring the State Space. To automatically find sequences
of actions that lead to privilege escalation, ChainReactor
needs to examine many possibilities, both in terms of the
different objects involved and the states it must consider. This
complexity is shown in Figure 6 for the number of objects and
in Figure 7 for the number of states. On average, our system
encounters 2,008 objects for AWS images (with a maximum
of 16,574) and 897 objects for DO images (with a maximum
of 8,374). Regarding the states to be explored, the average
numbers are 8 million (with a maximum of 141 million) for
AWS and 924 thousand (with a maximum of 85 million) for
DO. This level of complexity surpasses that of brute-force
exploration.
Generating Facts and Solving Problems. As we explain



Figure 6: Objects distribution in the generated problems:
AWS is orange, and Digital Ocean is blue.

Figure 7: States distribution in the search space: AWS is
orange, and Digital Ocean is blue.

Figure 8: Distribution of time to generate the PDDL prob-
lem file: AWS is orange, and Digital Ocean is blue.

Figure 9: Total analysis time (problem generation + solving)
distribution: AWS is orange, and Digital Ocean is blue.

in Section 4, the process with ChainReactor begins with the
automated generation of facts about the system being ana-
lyzed. This is to set up a problem in the PDDL format. To do
this, ChainReactor encompasses the extractor (Subsection 4.1)
and the encoder (Subsection 4.2). In Figure 8, we illustrate
the time required to create a problem file for each instance.
Specifically, creating a problem file with ChainReactor takes,
on average, 3 min (max. 86 min) for AWS environments and
33 sec on average (max. 2 min) for DO environments.

Once the PDDL problem is ready, ChainReactor moves on
to the planning phase. We show the total time taken, including
problem file creation and the planning process, in Figure 9.
The average time for processing all EC2 instances, regardless
of whether a solution is found, is around 36 min (max. 2h).
For DO instances, the average total time for all cases is around
32 min (max. 37 min).

Identified Vulnerabilities. Our evaluation identified several

previously unknown privilege escalation chains, specifically
16 targeting AWS and 4 aimed at DO images. Figure 10
displays the duration required to create each chain, arranged
from the quickest (5 minutes) to the slowest (half an hour).

We manually reproduced all identified chains. The common
thread across these vulnerable instances was the presence of
misconfigured permissions. The vulnerabilities we discov-
ered revolved around two main exploitable scenarios. The
first involved corrupting a systemd service unit file [19]. It
is a configuration file that specifies which executables are to
be invoked by systemd, under which user context they will
run, and the scheduling of their execution. An attacker with
write access to a service unit file can launch a malicious script
instead of the intended service. The same can be achieved via
the attacker’s modifications of a cron-invocable script [38].
The misconfiguration allowed for modifying the daemon file,
which, when subsequently executed with root privileges, could



Figure 10: Execution time distribution for exploited instances:
AWS is orange, and Digital Ocean is blue.

lead to potentially harmful actions. The second scenario in-
volved the corruption of scripts directly invoked by root.
Here, too, the misconfiguration of permissions allowed for
modifying these scripts, creating a similar risk.

Our two case studies provide a deeper dive into these sce-
narios, illustrating the risks and potential impacts of these
vulnerabilities.
Case study 1. The plan in Figure 11 represents a series of
actions that lead to privilege escalation on an EC2 instance.
It is important to note that this plan is valid and can be used
to exploit the reference instance.

We have two users in this scenario: the unprivileged
ubuntu user, which we control, and the root user.

The chain starts with Line 1, where the planner identifies
that the ubuntu user, a member of the netdev group, has
execution rights for busybox. This binary combines many
common Unix utilities into a single executable. Subsequently,
in Line 2, the planner determines that the ubuntu user also
has write access to the systemd service file calyptia. In the
third step (Line 3), the planner initiates a busybox process
under ubuntu credentials. The fourth step (Line 4) leverages
the write access to the calyptia service file by injecting
shellcode into the calyptia service file. Finally, in Line 5,
the corrupted calyptia service is invoked, leading to the ex-
ecution of the injected shellcode. Since this systemd service
runs with root privileges, this results in the spawning of a
shell as root, effectively achieving privilege escalation.

In the presented example, ChainReactor opts for busybox
to facilitate the exploitation in the outlined steps. However,
in other identified chains, we observed the use of different
binaries such as nohup, wget, and xxd to achieve similar
outcomes.
Case study 2. The plan in Figure 12 represents a series of ac-
tions that lead to privilege escalation on another EC2 instance.
As in the previous case, this plan is valid and can be used to

exploit the reference instance.
We have two users in this scenario: the unprivileged

ec2-user user, which we control, and the root user.
The exploitation chain begins with Line 1 and Line 2,

where the planner identifies that the ec2-user user, a member
of the docker group, has execution rights for vim and a script
located at opt/aws_dlami/bin/apply_instance_tag_
service.sh. Next, in Line 3, the planner identifies
that the ec2-user user has write permissions for
opt/aws_dlami/bin/apply_instance_tag_service.sh
script. The planner then launches a vim process under
the ec2-user, denoted by Line 4. In Line 5, the planner
leverages the write permissions of ec2-user on the script to
inject shellcode into this file. Finally, in Line 6, the corrupted
opt/aws_dlami/bin/apply_instance_tag_service.sh
script is assumed to be automatically invoked as part of
a routine process, leading to the execution of the injected
shellcode. Since the script is executed with root privileges,
this results in spawning a shell with administrative privileges.

Similarly to the first case study, ChainReactor opted for
vim while using other binaries to reach the same goal in other
chains.

6.3 Expanding ChainReactor with Ubuntu
Linux Vulnerability Information

As discussed in Subsection 4.1, our Extractor component has
the ability to extract fine-grained vulnerability information
for Ubuntu Linux. To demonstrate the effectiveness of incor-
porating this additional information into ChainReactor, we
analyzed all 930 Ubuntu-based Amazon EC2 instances.

We first ran our Extractor component on these instances
and identified 264 CVEs. Then, we utilized our GPT-based
classifier (Subsubsection 4.2.2), which divided the CVEs into
12 groups. We manually validated that all CVEs within each
group indeed introduced the same capabilities, and hence,
were labeled correctly. Then, we focused on the largest clus-
ter, containing 120 CVEs, and integrated the corresponding
actions into ChainReactor. This process took 6 hours, a signif-
icant speedup compared to the initial manual approach, where
we needed around the same time to add support for a single
CVE.

Upon integrating the 120 new CVEs into ChainReactor,
we executed our tool across all Ubuntu-based Amazon EC2
instances. This process unveiled a privilege escalation chain
leveraging this action in 20 instances. Specifically, we noted
the presence of CVE-2023-45044 [45] in all derived escala-
tion strategies, a vulnerability impacting the Common UNIX
Printing System (CUPS) operating as a daemon. Subsequent
manual verification confirmed the exploitability of CUPS,
thus validating all identified privilege escalation chains in
these instances.



1 1: (derive_user_can_execute_file ubuntu_u netdev_g usr_bin_busybox)
2 2: (derive_user_can_write_file ubuntu_u ubuntu_g etc_systemd_system_calyptia_service)
3 3: (spawn_process ubuntu_u netdev_g usr_bin_busybox process)
4 4: (write_data_to_file process usr_bin_busybox etc_systemd_system_calyptia_service shell local ubuntu_u

ubuntu_g)
5 5: (spawn_injected_shell_from_corrupted_daemon_file root_u etc_systemd_system_calyptia_service)

Figure 11: Plan generated for the first EC2 instance.

1 1: (derive_user_can_execute_file ec2-user_u docker_g usr_bin_vim )
2 2: (derive_user_can_execute_file ec2-user_u docker_g opt_aws_dlami_bin_apply_instance_tag_service_sh )
3 3: (derive_user_can_write_file ec2-user_u ec2-user_g opt_aws_dlami_bin_apply_instance_tag_service_sh )
4 4: (spawn_process ec2-user_u docker_g usr_bin_vim process )
5 5: (write_data_to_file process usr_bin_vim opt_aws_dlami_bin_apply_instance_tag_service_sh shell local

ec2-user_u ec2-user_g )
6 6: (spawn_injected_shell_from_executable_systematically_called_by_user ec2-user_u root_u docker_g

opt_aws_dlami_bin_apply_instance_tag_service_sh process )

Figure 12: Plan generated for the second EC2 instance.

7 Discussion & Limitations

The following sections delve into a detailed discussion of our
research findings. We also acknowledge the constraints of
our current approach and identify potential avenues for future
enhancements. This balanced examination allows us to better
understand our tool’s capabilities while setting the stage for
further research in automated exploitation chain discovery via
AI planning.

7.1 Discussion
A key strength of the ChainReactor system is its ability to
model and simulate the behavior of threat actors already
present on a target system. This contributes to the field, as
many current security measures focus primarily on preventing
initial system breaches. Our research addresses a gap in our
understanding of advanced persistent threat (APT) actors by
shifting the focus to post-breach activities. However, it is es-
sential to clarify that the specific entry points for these threat
actors are out of the scope of this paper. Future work could
integrate our approach with intrusion detection systems to
provide a more comprehensive end-to-end security analysis.

The results from our evaluation suggest that ChainReactor
can identify previously unreported chains in addition to redis-
covering known privilege escalation exploits. This ability to
discover new chains is particularly noteworthy, as it indicates
that ChainReactor can adapt to evolving threats and provide
valuable insights into potential future attacks.
Responsible Disclosure. Upon identifying exploitation
chains, we prioritized the responsible disclosure of these vul-
nerabilities to the relevant parties, specifically Amazon AWS
Security Team [65] and Digital Ocean [48], to mitigate po-
tential security risks. With AWS, our immediate actions led
to removing two images from their offerings based on the
vulnerabilities we reported.

Throughout this process, we follow the ethical disclosure
guidelines, ensuring that no details of live exploits are pub-
lished or disclosed publicly until they have been addressed
adequately by the involved parties. Thus, this work does not
contain any information that allows for identifying vulnerable
instances.

7.2 Limitations and Future Work

Despite the promising results, there are several limitations to
our current approach and areas for future improvement.

First, ChainReactor currently targets privilege escalation
but is adaptable to various attacker goals formulated within
the PDDL framework. Our suite of test problems extends
beyond escalation, covering goals like file exfiltration — uti-
lizing binaries with download/upload functions to transfer
files in/out of the compromised system.

Second, the current version of ChainReactor supports a lim-
ited set of actions. While the actions supported are sufficient
to generate meaningful exploitation chains, expanding the
range of actions could lead to the discovery of more complex
and subtle exploitation chains.

Third, while ChainReactor can generate exploitation chains,
it currently does not produce executable exploit code that
can be run directly on the target system. This means that
while ChainReactor can identify chains, it cannot automat-
ically validate them by executing them. This is an area for
future development, as automatic validation would provide
further evidence of the validity of the identified chains.

Fourth, this paper does not cover the initial infiltration
phase. ChainReactor’s framework could potentially be ex-
panded to include it as a preliminary step.

Last, there are several specific areas of system functionality
that ChainReactor does not currently support, including Linux
capabilities, network mounts, and path environment variable



injection. These are all potential avenues for exploitation and
should be considered in future iterations of ChainReactor.

In conclusion, while ChainReactor represents a significant
step forward in automated exploit discovery, work remains.
The limitations identified above provide a roadmap for future
research and development, with the ultimate goal of creating a
fully automated system capable of identifying and validating
a wide range of exploitation chains.

8 Related Work

Network Attacks. Various approaches have been proposed
to investigate network attacks utilizing Artificial Intelligence
(AI). Cohen [11] was among the pioneers in this field, study-
ing attacks as simulations in a cause-effect model. This sim-
ulation approach has been further leveraged for evaluating
penetration testing practices through planning [3,27,68], rein-
forcement learning [20, 78, 80], Bayesian networks [60], and
a blend of Boolean logic and machine learning [28].

Network attacks have also been examined through various
modeling techniques. Graph-based models (attack graphs)
have been particularly popular, as evidenced by several stud-
ies [29, 33, 34, 40, 51, 53, 67]. Other modeling approaches
include Petri-net-based models [58, 79], formal logical mod-
els [36], and game-theoretic models [1].
AI Planning for Network Attacks. The application of AI
planning in the domain of network attack simulation and
modeling has proven to be beneficial [3, 27, 39, 68]. Choi et
al. [9] applied this concept to smart grid attack response.
“Classical” Single-Step Vulnerability Discovery. This cat-
egory encompasses a wide variety of techniques. Fuzzing, a
method of testing where large amounts of data are inputted
into a system, has been examined in several studies [17, 37].
Symbolic execution, a means of analyzing a program to de-
termine what inputs cause each part of it to execute, has also
been leveraged [4]. Hybrid fuzzing, which combines fuzzing
and symbolic execution, has been explored in depth [7,55,69].
Other techniques include bounded model checking, a method
for checking properties of programs [5], static analysis, the
analysis of computer software performed without executing
programs [8], and formal verification, the act of proving or
disproving the correctness of programs concerning a certain
formal specification or property [25].
Privilege Escalation. Investigations into privilege escala-
tion have spanned across numerous domains, commencing
with the early exploration of UNIX’s design and security
model [23, 63]. Since then, the model has faced a myriad
of privilege escalation threats [57, 59], including hardware-
targeted attacks [74]. Among the prevalent techniques, the
abuse of SetUID permissions has been particularly notewor-
thy [31,32], as well as the exploitation of race conditions [16].
In the hardware context, the focus has been on zero-overhead
malicious modifications or fabrication attacks [74]. Mean-

while, studies in the browser environment have shed light
on privilege escalation attacks via extensions [35]. Trusted
Execution Environments (TEEs), despite their promise of
enhanced security, have shown vulnerabilities to Horizontal
Privilege Escalation (HPE) [70]. The Android platform has
also been extensively analyzed for potential privilege esca-
lation threats [2, 15, 61]. Cross-technology performance fea-
tures have been exploited in the wireless sector for inter-chip
privilege escalation [10]. In the cloud environment, poten-
tial privilege escalation attack scenarios and misconfiguration
vulnerabilities have been identified within Kubernetes and
Microsoft’s Azure Active Directory [24, 52]. Lastly, inves-
tigations into UEFI firmware have utilized protocol-centric
static analysis to uncover privilege escalation vulnerabilities
in SMM [77].
Grounded and Lifted Planners. To improve the perfor-
mance of the solving process, planners use preprocessing
steps. Among these, a crucial step is grounding. Ground-
ing transforms the problem from the abstract, logic-based
PDDL representation to a more concrete, propositional
form [13, 21, 26]. Despite their potential efficiency in spe-
cific domains, grounded planners are known to be memory-
intensive [64]. This is due to the grounding process, which
potentially leads to an exponential explosion proportional to
the number of predicates, actions, and objects.

Unlike grounded planners, lifted planners operate directly
on the abstract, logic-based representation of the problem [14,
62], i.e., they do not perform grounding. While this approach
might be less efficient in some scenarios, it provides a signif-
icant advantage for larger problems where the resources re-
quired for grounding are prohibitive. For our research, dealing
with large-scale problems, the immediate search capabilities
of lifted planners, despite their potential inefficiency, make
them a viable and necessary alternative to grounded planners.

9 Conclusion

This paper presents ChainReactor, an automated system for
discovering exploitation chains to achieve privilege escalation
on Unix systems. ChainReactor models the problem as an
AI planning task, extracting capabilities from the target sys-
tem, encoding them into a planning problem, and leveraging
modern planners to derive exploitation chains.

The evaluation on CTF VMs and real-world Amazon EC2
and Digital Ocean instances demonstrated ChainReactor’s
ability to rediscover known privilege escalation exploits and
identify novel chains. On CTF VMs, it found chains matching
or extending published walkthroughs. When evaluated on
hundreds of EC2 and Digital Ocean images, it discovered
previously unreported exploitable privilege escalation paths.

Overall, ChainReactor offers a practical application of AI
planning for security, automating a process to uncover chained
exploits.



Acknowledgements

The authors want to express their sincere gratitude to Augusto
Blaas Corrêa for his PDDL expertise and support throughout
the development of this study.

This material is based on research sponsored by DARPA
under agreement number N66001-22-2-4037. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon.

This material is also supported by the National Science
Foundation under grant no. 2229876 and is supported in part
by funds provided by the National Science Foundation, by
the Department of Homeland Security, and by IBM.

Partial support was also provided through a gift from Cisco.
The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of DARPA or the U.S. Government, or of NSF or
its federal agency and industry partners.

References

[1] Robert K Abercrombie, Bob G Schlicher, and Freder-
ick T Sheldon. Security analysis of selected ami failure
scenarios using agent based game theoretic simulation.
In 2014 47th Hawaii International Conference on Sys-
tem Sciences, pages 2015–2024. IEEE, 2014.

[2] Abdulla Aldoseri, David Oswald, and Robert Chiper. A
tale of four gates: Privilege escalation and permission
bypasses on android through app components. In Eu-
ropean Symposium on Research in Computer Security,
pages 233–251. Springer, 2022.

[3] Adam Amos-Binks, Joshua Clark, Kirk Weston, Michael
Winters, and Khaled Harfoush. Efficient attack plan
recognition using automated planning. In 2017 IEEE
symposium on computers and communications (ISCC),
pages 1001–1006. IEEE, 2017.

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia,
Camil Demetrescu, and Irene Finocchi. A survey of sym-
bolic execution techniques. ACM Computing Surveys
(CSUR), 51(3):1–39, 2018.

[5] Armin Biere, Alessandro Cimatti, Edmund M Clarke,
Ofer Strichman, and Yunshan Zhu. Bounded model
checking. Handbook of satisfiability, 185(99):457–481,
2009.

[6] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen,
Michael Franz, Stefan Brunthaler, and Mathias Payer.
Control-flow integrity: Precision, security, and perfor-
mance. ACM Computing Surveys (CSUR), 50(1):1–33,
2017.

[7] Ju Chen, Wookhyun Han, Mingjun Yin, Haochen Zeng,
Chengyu Song, Byoungyoung Lee, Heng Yin, and Insik
Shin. SYMSAN: Time and space efficient concolic exe-
cution via dynamic data-flow analysis. In 31st USENIX
Security Symposium (USENIX Security 22), pages 2531–
2548, 2022.

[8] Brian Chess and Gary McGraw. Static analysis for
security. IEEE security & privacy, 2(6):76–79, 2004.

[9] Taejun Choi, Ryan KL Ko, Tapan Saha, Joshua Scars-
brook, Abigail MY Koay, Shunyao Wang, Wenlu Zhang,
and Connor St Clair. Plan2defend: Ai planning for cy-
bersecurity in smart grids. 2021 IEEE PES Innovative
Smart Grid Technologies-Asia (ISGT Asia), pages 1–5,
2021.

[10] Jiska Classen, Francesco Gringoli, Michael Hermann,
and Matthias Hollick. Attacks on wireless coexistence:
Exploiting cross-technology performance features for
inter-chip privilege escalation. In 2022 IEEE Sympo-
sium on Security and Privacy (SP), pages 1229–1245.
IEEE, 2022.

[11] Fred Cohen. Simulating cyber attacks, defences, and
consequences. Computers & Security, 18(6):479–518,
1999.

[12] Intel Corporation. cve-bin-tool. https://github.com
/intel/cve-bin-tool, 2023.

[13] Augusto B Corrêa, Markus Hecher, Malte Helmert, Da-
vide Mario Longo, Florian Pommerening, and Stefan
Woltran. Grounding planning tasks using tree decompo-
sitions and iterated solving. 2023.

[14] Augusto B Corrêa, Florian Pommerening, Malte
Helmert, and Guillem Frances. Lifted successor genera-
tion using query optimization techniques. In Proceed-
ings of the International Conference on Automated Plan-
ning and Scheduling, volume 30, pages 80–89, 2020.

[15] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, and Marcel Winandy. Privilege escalation at-
tacks on android. In Information Security: 13th Inter-
national Conference, ISC 2010, Boca Raton, FL, USA,
October 25-28, 2010, Revised Selected Papers 13, pages
346–360. Springer, 2011.

[16] Tanjila Farah, Rashed Shelim, Moniruz Zaman,
Md Maruf Hassan, and Delwar Alam. Study of
race condition: A privilege escalation vulnerability.
In WMSCI 2017-21st World Multi-Conference Syst.
Cybern. Informatics, Proc, volume 2, pages 100–105,
2017.

https://github.com/intel/cve-bin-tool
https://github.com/intel/cve-bin-tool


[17] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. Afl++ combining incremental steps of
fuzzing research. In Proceedings of the 14th USENIX
Conference on Offensive Technologies, pages 10–10,
2020.

[18] Maria Fox and Derek Long. Pddl2. 1: An extension to
pddl for expressing temporal planning domains. Journal
of artificial intelligence research, 20:61–124, 2003.

[19] freedesktop.org. systemd.unit. https://www.freede
sktop.org/software/systemd/man/latest/syst
emd.unit.html, 2023.

[20] M Ghanem and T Chen. Reinforcement learning for
efficient network penetration testing. information 11, 6
(2019).

[21] Daniel Gnad, Alvaro Torralba, Martín Domínguez, Car-
los Areces, and Facundo Bustos. Learning how to
ground a plan–partial grounding in classical planning.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7602–7609, 2019.

[22] Google. Project zero. https://googleprojectzero.
blogspot.com/, 2023.

[23] Frederick T Grampp and Robert H Morris. The unix
system: Unix operating system security. AT&T Bell Lab-
oratories Technical Journal, 63(8):1649–1672, 1984.

[24] Ibrahim Bu Haimed, Marwan Albahar, and Ali
Alzubaidi. Exploiting misconfiguration vulnerabilities
in microsoft’s azure active directory for privilege esca-
lation attacks. Future Internet, 15(7):226, 2023.

[25] Osman Hasan and Sofiene Tahar. Formal verifica-
tion methods. In Encyclopedia of Information Science
and Technology, Third Edition, pages 7162–7170. IGI
Global, 2015.

[26] Malte Helmert. Concise finite-domain representations
for pddl planning tasks. Artificial Intelligence, 173(5-
6):503–535, 2009.

[27] Jörg Hoffmann. Simulated penetration testing: From"
dijkstra" to" turing test++". In Proceedings of the inter-
national conference on automated planning and schedul-
ing, volume 25, pages 364–372, 2015.

[28] Hannes Holm. Lore a red team emulation tool. IEEE
Transactions on Dependable and Secure Computing,
20(2):1596–1608, 2022.

[29] Hannes Holm, Khurram Shahzad, Markus Buschle, and
Mathias Ekstedt. P2 CySeMoL: Predictive, probabilistic
cyber security modeling language. IEEE Transactions
on Dependable and Secure Computing, 12(6):626–639,
2014.

[30] Zero Day Initiative. Pwn2own vancouver. https:
//www.zerodayinitiative.com/blog/2023/3/21
/pwn2own-vancouver-schedule-2023, 2023.

[31] Bhushan Jain, Chia-Che Tsai, Jitin John, and Donald E
Porter. Practical techniques to obviate setuid-to-root
binaries. In Proceedings of the Ninth European Confer-
ence on Computer Systems, pages 1–14, 2014.

[32] Yuseok Jeon, Junghwan Rhee, Chung Hwan Kim,
Zhichun Li, Mathias Payer, Byoungyoung Lee, and
Zhenyu Wu. Polper: Process-aware restriction of over-
privileged setuid calls in legacy applications. In Pro-
ceedings of the Ninth ACM Conference on Data and
Application Security and Privacy, pages 209–220, 2019.

[33] Pontus Johnson, Robert Lagerström, and Mathias Ekst-
edt. A meta language for threat modeling and attack sim-
ulations. In Proceedings of the 13th International Con-
ference on Availability, Reliability and Security, pages
1–8, 2018.

[34] Elmar Kiesling, Christine Strauss, Andreas Ekelhart,
Bernhard Grill, and Christian Stummer. Simulation-
based optimization of information security controls: An
adversary-centric approach. In 2013 Winter Simulations
Conference (WSC), pages 2054–2065. IEEE, 2013.

[35] Young Min Kim and Byoungyoung Lee. Extending a
hand to attackers: Browser privilege escalation attacks
via extensions. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 7055–7071, 2023.

[36] Igor Kotenko. Active vulnerability assessment of com-
puter networks by simulation of complex remote attacks.
In 2003 International Conference on Computer Net-
works and Mobile Computing, 2003. ICCNMC 2003.,
pages 40–47. IEEE, 2003.

[37] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei
Shen, and Jian Zhang. Fuzzing: State of the art. IEEE
Transactions on Reliability, 67(3):1199–1218, 2018.

[38] Linux Manual. cron. https://man7.org/linux/man
-pages/man8/cron.8.html, 2023.

[39] Doug Miller, Ron Alford, Andy Applebaum, Henry Fos-
ter, Caleb Little, and Blake Strom. Automated adver-
sary emulation: A case for planning and acting with un-
knowns. MITRE CORP MCLEAN VA MCLEAN, 2018.

[40] Reuth Mirsky, Ya’ar Shalom, Ahmad Majadly, Kobi Gal,
Rami Puzis, and Ariel Felner. New goal recognition
algorithms using attack graphs. In Cyber Security Cryp-
tography and Machine Learning: Third International
Symposium, CSCML 2019, Beer-Sheva, Israel, June 27–
28, 2019, Proceedings 3, pages 260–278. Springer, 2019.

https://www.freedesktop.org/software/systemd/man/latest/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/latest/systemd.unit.html
https://www.freedesktop.org/software/systemd/man/latest/systemd.unit.html
https://googleprojectzero.blogspot.com/
https://googleprojectzero.blogspot.com/
https://www.zerodayinitiative.com/blog/2023/3/21/pwn2own-vancouver-schedule-2023
https://www.zerodayinitiative.com/blog/2023/3/21/pwn2own-vancouver-schedule-2023
https://www.zerodayinitiative.com/blog/2023/3/21/pwn2own-vancouver-schedule-2023
https://man7.org/linux/man-pages/man8/cron.8.html
https://man7.org/linux/man-pages/man8/cron.8.html


[41] MITRE. Cve records. https://cve.mitre.org/,
2023.

[42] NIST-NVD. National vulnerability database. https:
//nvd.nist.gov, 2023.

[43] NIST NVD. Cve-2022-1271. https://nvd.nist.g
ov/vuln/detail/CVE-2022-1271, 2022.

[44] NIST NVD. Cve-2022-2068. https://nvd.nist.g
ov/vuln/detail/CVE-2022-2068, 2022.

[45] NIST NVD. Cve-2023-4504. https://nvd.nist.g
ov/vuln/detail/CVE-2023-4504, 2022.

[46] NIST NVD. Cve-2022-20869. https://nvd.nist.g
ov/vuln/detail/CVE-2023-20869, 2023.

[47] NIST NVD. Cve-2023-20870. https://nvd.nist.g
ov/vuln/detail/CVE-2023-20870, 2023.

[48] Digital Ocean. Hackerone vulnerability disclosure. ht
tps://hackerone.com/digitalocean/, 2024.

[49] OpenAI. Openai api. https://openai.com/product.

[50] OpenAI. Gpt-4-turbo. https://help.openai.com/
en/articles/8555510-gpt-4-turbo, 2023.

[51] Xinming Ou, Sudhakar Govindavajhala, Andrew W Ap-
pel, et al. Mulval: A logic-based network security ana-
lyzer. In USENIX security symposium, volume 8, pages
113–128. Baltimore, MD, 2005.

[52] Nicholas Pecka, Lotfi Ben Othmane, and Altaz Valani.
Privilege escalation attack scenarios on the devops
pipeline within a kubernetes environment. In Pro-
ceedings of the International Conference on Software
and System Processes and International Conference on
Global Software Engineering, pages 45–49, 2022.

[53] Casey Perkins and George Muller. Using discrete event
simulation to model attacker interactions with cyber and
physical security systems. Procedia Computer Science,
61:221–226, 2015.

[54] Emilio Pinna and Andrea Cardaci. Gtfobins. https:
//gtfobins.github.io/, 2023.

[55] Sebastian Poeplau and Aurélien Francillon. Symbolic
execution with SymCC: Don’t interpret, compile! In
29th USENIX Security Symposium (USENIX Security
20), pages 181–198, 2020.

[56] Polop. Linpeas - linux privilege escalation awesome
script. https://github.com/carlospolop/PEASS
-ng/tree/master/linPEAS, 2023.

[57] Niels Provos, Markus Friedl, and Peter Honeyman. Pre-
venting privilege escalation. In 12th USENIX Security
Symposium (USENIX Security 03), 2003.

[58] Srdjan Pudar, Govindarasu Manimaran, and Chen-Ching
Liu. Penet: A practical method and tool for integrated
modeling of security attacks and countermeasures. Com-
puters & Security, 28(8):754–771, 2009.

[59] Weizhong Qiang, Jiawei Yang, Hai Jin, and Xuanhua
Shi. Privguard: Protecting sensitive kernel data from
privilege escalation attacks. IEEE Access, 6:46584–
46594, 2018.

[60] Xinzhou Qin and Wenke Lee. Attack plan recognition
and prediction using causal networks. In 20th Annual
Computer Security Applications Conference, pages 370–
379. IEEE, 2004.

[61] Mohammed Rangwala, Ping Zhang, Xukai Zou, and
Feng Li. A taxonomy of privilege escalation attacks in
android applications. International Journal of Security
and Networks, 9(1):40–55, 2014.

[62] Bernardus Ridder. Lifted heuristics: towards more scal-
able planning systems. PhD thesis, King’s College Lon-
don (University of London), 2014.

[63] Dennis M Ritchie and Ken Thompson. The unix
time-sharing system. Communications of the ACM,
17(7):365–375, 1974.

[64] Enrico Scala and Mauro Vallati. Effective grounding
for hybrid planning problems represented in pddl+. The
Knowledge Engineering Review, 36:e9, 2021.

[65] Aamazon Web Services. Vulnerability reporting. https:
//aws.amazon.com/security/vulnerability-rep
orting/, 2023.

[66] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the effective-
ness of address-space randomization. In Proceedings of
the 11th ACM conference on Computer and communi-
cations security, pages 298–307, 2004.

[67] Kacper Sowka, Vasile Palade, Hesamaldin Jadidbonab,
Paul Wooderson, and Hoang Nguyen. A review on
automatic generation of attack trees and its application
to automotive cybersecurity. Artificial Intelligence and
Cyber Security in Industry 4.0, pages 165–193, 2023.

[68] Patrick Speicher, Marcel Steinmetz, Jörg Hoffmann,
Michael Backes, and Robert Künnemann. Towards au-
tomated network mitigation analysis. In Proceedings of
the 34th ACM/SIGAPP symposium on applied comput-
ing, pages 1971–1978, 2019.

https://cve.mitre.org/
https://nvd.nist.gov
https://nvd.nist.gov
https://nvd.nist.gov/vuln/detail/CVE-2022-1271 
https://nvd.nist.gov/vuln/detail/CVE-2022-1271 
https://nvd.nist.gov/vuln/detail/CVE-2022-2068
https://nvd.nist.gov/vuln/detail/CVE-2022-2068
https://nvd.nist.gov/vuln/detail/CVE-2023-4504
https://nvd.nist.gov/vuln/detail/CVE-2023-4504
https://nvd.nist.gov/vuln/detail/CVE-2023-20869 
https://nvd.nist.gov/vuln/detail/CVE-2023-20869 
https://nvd.nist.gov/vuln/detail/CVE-2023-20870 
https://nvd.nist.gov/vuln/detail/CVE-2023-20870 
https://hackerone.com/digitalocean/
https://hackerone.com/digitalocean/
https://openai.com/product 
https://help.openai.com/en/articles/8555510-gpt-4-turbo
https://help.openai.com/en/articles/8555510-gpt-4-turbo
https://gtfobins.github.io/
https://gtfobins.github.io/
https://github.com/carlospolop/PEASS-ng/tree/master/linPEAS
https://github.com/carlospolop/PEASS-ng/tree/master/linPEAS
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/


[69] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, volume 16, pages 1–16, 2016.

[70] Darius Suciu, Stephen McLaughlin, Laurent Simon, and
Radu Sion. Horizontal privilege escalation in trusted
applications. In 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[71] O. Tange. Gnu parallel - the command-line power tool.
;login: The USENIX Magazine, 36(1):42–47, Feb 2011.

[72] Ignite Technologies. Privilege escalation ctf vms. http
s://github.com/Ignitetechnologies/Privileg
e-Escalation, 2023.

[73] Nguyen Hoang Thach. Zero day initiative — cve-
2023-20869/20870: Exploiting vmware workstation at
pwn2own vancouver. https://www.zerodayinitiat
ive.com/blog/2023/5/17/cve-2023-208692087
0-exploiting-vmware-workstation-at-pwn2own
-vancouver, 2023.

[74] Nektarios Georgios Tsoutsos and Michail Maniatakos.
Fabrication attacks: Zero-overhead malicious modifi-
cations enabling modern microprocessor privilege es-
calation. IEEE Transactions on Emerging Topics in
Computing, 2(1):81–93, 2013.

[75] Ubuntu. Ubuntu cves. https://ubuntu.com/secur
ity/cves, 2023.

[76] Akanksha Sachin Verma. Escalate my privileges. http
s://www.vulnhub.com/entry/escalate-my-pri
vileges-1,448/, 2020.

[77] Jiawei Yin, Menghao Li, Wei Wu, Dandan Sun, Jian-
hua Zhou, Wei Huo, and Jingling Xue. Finding smm
privilege-escalation vulnerabilities in uefi firmware with
protocol-centric static analysis. In 2022 IEEE Sympo-
sium on Security and Privacy (SP), pages 1623–1637.
IEEE, 2022.

[78] Fabio Massimo Zennaro and László Erdődi. Modelling
penetration testing with reinforcement learning using
capture-the-flag challenges: Trade-offs between model-
free learning and a priori knowledge. IET Information
Security, 17(3):441–457, 2023.

[79] Gaofeng Zhang, Paolo Falcarin, Elena Gómez-Martínez,
Shareeful Islam, Christophe Tartary, Bjorn De Sutter,
and Jerome d’Annoville. Attack simulation based soft-
ware protection assessment method. In 2016 Interna-
tional Conference On Cyber Security And Protection
Of Digital Services (Cyber Security), pages 1–8. Ieee,
2016.

[80] Shicheng Zhou, Jingju Liu, Dongdong Hou, Xiaofeng
Zhong, and Yue Zhang. Autonomous penetration testing
based on improved deep q-network. Applied Sciences,
11(19):8823, 2021.

https://github.com/Ignitetechnologies/Privilege-Escalation
https://github.com/Ignitetechnologies/Privilege-Escalation
https://github.com/Ignitetechnologies/Privilege-Escalation
https://www.zerodayinitiative.com/blog/2023/5/17/cve-2023-2086920870-exploiting-vmware-workstation-at-pwn2own-vancouver
https://www.zerodayinitiative.com/blog/2023/5/17/cve-2023-2086920870-exploiting-vmware-workstation-at-pwn2own-vancouver
https://www.zerodayinitiative.com/blog/2023/5/17/cve-2023-2086920870-exploiting-vmware-workstation-at-pwn2own-vancouver
https://www.zerodayinitiative.com/blog/2023/5/17/cve-2023-2086920870-exploiting-vmware-workstation-at-pwn2own-vancouver
https://ubuntu.com/security/cves
https://ubuntu.com/security/cves
https://www.vulnhub.com/entry/escalate-my-privileges-1,448/
https://www.vulnhub.com/entry/escalate-my-privileges-1,448/
https://www.vulnhub.com/entry/escalate-my-privileges-1,448/

	Introduction
	Background
	Privilege Escalation
	Planning

	Motivation & Threat Model
	Motivating Example
	Threat Model

	Approach
	Extractor
	Encoder
	Encoding Generic Capabilities
	Encoding CVEs
	Encoding Example

	Domain & Plan

	Implementation
	Evaluation
	CTF VMs
	AWS EC2 and Digital Ocean Instances
	Expanding ChainReactor with Ubuntu Linux Vulnerability Information

	Discussion & Limitations
	Discussion
	Limitations and Future Work

	Related Work
	Conclusion

