

Temporal Experimental Bias

Caused by violating the temporal

consistency of train and test sets.

Spatial Experimental Bias

Caused by using unrealistic class

ratios in the test set.

TESSERACT

space-time bias-free

evaluation framework

Enabling Fair ML Evaluations for Security

Outputs

Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, Lorenzo Cavallaro Royal Holloway, University of London & King's College London

ML Security evaluations evaluations are flawed hold, e.g., concept drift, adversarial ML.

Best practices for ML evaluations, such as k-fold CV, fail when i.i.d. assumptions do not

C1 Temporal training consistency

All the objects in the training must be strictly temporally precedent to those in the testing.

K-fold CV

K-fold cross-validation randomly samples objects in a time-agnostic manner which fails to model a real-world deployment.

Violations use future knowledge in training.

2014

C2 {good mal}ware temporal consistency

In every testing period, all test objects must be from the same time window.

Violations may learn artifacts, such as old vs new APIs.

Obscuring real performance

[NDSS14] bit vector features (APIs, metadata, strings, etc.), linear SVM, 66-34% holdout evaluation.

[NDSS17] Markov Chain-derived features (caller-callee APIs), RF, k-fold CV and (biased) timeline evaluation.

C3 Realistic testing classes ratio

The testing distribution must reflect real-world objects ratios, such as malware-to-goodware percentages in a given context.

$$P_{mw}^* = \frac{TP}{TP + FP} \qquad R_{mw}^* = \frac{TP}{TP + FN}$$

*Undersampling goodware keeps R_{mw} steady and increases P_{mw}

Violations produce unrealistic results.

TESSERACT: for when time matters!

- Python 3 prototype
- Compatible with scikit-learn and Keras
- Support for different time partitions
- Time-aware plots and metrics
- Active learning and rejection strategies
- $AUT(f, \Delta) = \frac{1}{N-1} \sum_{k=1}^{N-1} \frac{[f(x_{k+1}) + f(x_k)]}{2N}$

Area Under Time (AUT)

evaluation

▼ Available at: s2lab.kcl.ac.uk/projects/tesseract/

Revealing real performance

F. Pendlebury*, F. Pierazzi*, R. Jordaney, J. Kinder, L. Cavallaro

- When the Magic Wears Off: Flaws in ML for Security Evaluations (and What to Do about It)—USENIX ENIGMA 2019
- POSTER: Enabling Fair ML Evaluations for Security—ACM CCS 2018
- TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time—arXiv 2018

Research funded by grants EP/L022710/1 and EP/P009301/1

