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Abstract. The paper describes an application of a novel clustering
technique based on Conformal Predictors. Unlike traditional clustering
methods, this technique allows to control the number of objects that
are left outside of any cluster by setting up a required confidence level.
This paper considers a multi-class unsupervised learning problem, and
the developed technique is applied to bot-generated network traffic. An
extended set of features describing the bot traffic is presented and the
results are discussed.
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1 Introduction

Within the past decade, security research begun to rely heavily on machine learn-
ing to develop new techniques to help in the identification and classification of
cyber threats. Specifically, in the area of network intrusion detection, botnets are
of particular interest as these often hide within legitimate applications traffic.
A botnet is a network of infected computers controlled by an attacker, the bot-
master, via the Command and Control server (C&C ). Botnets are a widespread
malicious activity among the Internet, and they are used to perform attacks
such as phishing, information theft, click-jacking, and Distributed Denial of Ser-
vice (DDoS). Bots detection is a branch of network intrusion detection which
aims at identifying botnet infected computers (bots). Recent studies, such as [9],
rely on clustering and focus their analysis on high level characteristics of net-
work traffic (network traces) to distinguish between different botnet threats.
We take an inspiration from this approach, and apply Conformal Clustering,
a technique based on Conformal Predictors (CP) [10], with an extended set of
features. We produce clusters from unlabelled training examples; then on a test
set we associate a new object with one of the clusters. Our aim is to achieve
a high intra-cluster similarity in terms of application layer protocols (http, irc
and p2p).
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In previous work [4,5,8] the conformal technique was applied to the problem
of anomaly detection. It also demonstrated how to create clusters: a prediction
set produced by CP was interpreted as a set of possible objects which conform to
the dataset and therefore are not anomalies; however the prediction set may con-
sist of several parts that are interpreted as clusters, where the significance level
is a “trim” to regulate the depth of the clusters’ hierarchy. The work in [8] was
focused on a binary (anomaly/not anomaly) unsupervised problem. This paper
generalizes [8] for a multi-class unsupervised learning problem. This includes the
problem of clusters creation, solved here by using a neighbouring rule, and the
problem of evaluating clusters accuracy, solved by using Purity criterion. For
evaluating efficiency we use Average P-Value criterion, earlier presented in [8].

In our approach we extract features from network traces generated by a
bot. Then we apply preprocessing and dimensionality reduction with t-SNE; the
use of t-SNE, previously used in the context of Conformal Clustering in [8], is
here needed for computational efficiency, since the way we here apply Conformal
Clustering has a time complexity increasing as Δ×�d, where Δ is the complexity
to calculate a P-Value and varies respect to the chosen non-conformity measure,
� is the number of points per side of the grid, and d is the number of dimensions.
This complexity can be reduced further for some underlying algorithms. The
dataset is separated into training and test sets, and clustering is applied to
training set. After this the testing objects are associated with the clusters.

An additional contribution made by this paper is related to feature collection:
an algorithm based on Partial Autocorrelation Function (PACF) to detect a
periodic symbol in binary time series is proposed.

2 Data Overview

The developed system is run on network traces produced by different families of
botnets. A network trace is a collection of network packets captured in a certain
window of time. A network trace can be split into network flows (netflows), a
collection of packets belonging to the same communication. A netflow contains
high level information of the packet exchange, such as the communicating IP
addresses and ports, a timestamp, the duration, and the number and size of
exchanged packets (transmitted, received and total). As [9] suggested, a system
using only netflows, thus not modelling the content of the packets, is reliable
even when the traffic between bot and C&C is encrypted.

In the dataset creation phase we extract a feature vector from every network
trace. A feature vector is composed of the following 18 features: median and
MAD (Mean Absolute Deviation) of netflows duration, median and MAD of
exchanged bytes, communication frequency, use percentage of TCP and UDP
protocols, use percentage of ports respectively in three ranges1, median and
MAD of transmitted and received bytes considering the bot as source, median
and MAD of transmitted and received bytes considering the connection initiator
1 We base these ranges on the standard given by IANA: System Ports (0–1023), User

Ports (1024–49151), and Dynamic and/or Private Ports (49152–65535).
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as source. Duration of netflows, transmitted received and total exchanged bytes
have been used in past research for bots detection [9]; these quantities were
usually modelled by their mean value. We model them here by using median
and MAD, since normal distribution is not assumed; furthermore, median is
invariant in non-linear rescaling.

Since, as others observed [9], in most botnet families bots communicate peri-
odically, we introduce the feature frequency which takes into account the period
of communication, if any. We can detect the period of communication by looking
at the netflows timestamps, and constructing a binary time series yt as:

yt =

{
1, if flow occurred at time t

0, if no flow occurred at time t
for t in {0,1,...}, (1)

where time t is measured in seconds.
For a period T we then define the feature frequency to be:

frequency =

{
0, if T = ∞(no period)
1/T, otherwise

for T > 0.

which is consistent whenever a period is found or not. Later in this section we
introduce a novel approach for detecting periodicity within a binary time series
defined as in Eq. 1.

The dataset we use contains traffic from 9 families of botnets and we will
group them with respect to the application layer protocol they are based on. We
hence define three classes of botnets: http, irc and p2p based. Our goal is to
produce clusters containing objects from the same class. In this paper objects
and feature vectors refer to the same concept; example refers to a labelled object.

2.1 Periodicity Detection Based on PACF

Equation (1) defines a binary time series yt, such that yt = 1 when some event
has happened at time t, yt = 0 otherwise. Our goal is to check whether the time
series contains a periodic event, and if so we want to determine the period T
of this event. The study [1] calls this task ‘Symbol Periodicity’ detection. Past
studies in bots detection, such as [9], approached the problem by using Power
Spectral Density (PSD) of the Fast Fourier Transform of the series.

We propose an algorithm based on Partial Autocorrelation Function (PACF)
for achieving this goal, which is simple to implement, well performing under noisy
conditions2, and which may be extended to capture more than one periodic event.

Given a generic time series ut, the PACF of lag k is the autocorrelation
between ut and ut−k, removing the contribution of the lags in between, t − 1 to
t − k + 1. The PACF coefficients φkk between ut and ut−k, are defined as [2]:
2 By noise we mean events which can happen at any time t; let W=Integer(L ∗ ν),

where L is the length of yt and ν ∈ [0, 1] the percentage of noise (noise level), we
simulate noise in our artificial time series by setting yt = 1 for a number W of
positions t uniformly sampled in [1, L].
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φ11 = ρ1

φ22 = (ρ2 − ρ21)/(1 − ρ21)

φkk =
ρk − ∑k−1

j=1 φk−1,jρk−j

1 − ∑k−1
j=1 φk−1,jρj

, k = 3, 4, 5, ...

where ρi is the autocorrelation for lag i, and φkj = φk−1,j − φkkφk−1,k−j for
j = 1, 2, ..., k − 1.

Fig. 1. PACF over a binary time series with one periodic event of periodicity T = 23
exhibits a peak at lag k = 23

From our experiments on artificial binary time series with one periodic event
we noticed that PACF on them presents a high peak at the lag corresponding to
the period T . For instance, Fig. 1 is the PACF over an artificial binary time series
of 104 elements, having a periodic event with period T = 23. This fact holds true
even under noisy conditions. We run our experiments on artificial binary time
series of length 104, testing all the periods in {3, 4, ..., 100}, inserting different
percentages of white noise and computing PACF over 150 lags. The period is
estimated as the lag at which PACF is maximum, and checked if equal to the
true period. The experiments show that for a time series of length L = 104 the
accuracy remains 1 for the noise level ν = 0.05 and becomes 0.83 for ν = 0.2. If
L = 105, then it is pure for up to ν = 0.1, while for noise level ν = 0.2 it is 0.96.

So far we assumed to know that a periodicity existed in yt. In case, as for our
dataset, we do not assume a priori a periodicity exists, we can use a threshold
for performing detection. We noticed that relevant peaks in PACF are larger
than 0.65. Hence we compute PACF, get the maximum of it, and consider its
lag to be a valid period only if its value is larger than a threshold ϑ = 0.65;
otherwise, we consider the time series to be aperiodic.
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3 Conformal Clustering Approach

We perform the following steps on a dataset X created as in Sect. 2:

1. Preprocessing of X;
2. Dimensionality reduction with t-SNE (produces Z);
3. Z is split into training (100) and test (34) set;
4. Conformal Clustering on training set;
5. Test objects are associated to the clusters following a neighbouring rule.

After this, evaluation criteria Average P-Value (APV) and Purity are computed.

3.1 Preprocessing and Dimensionality Reduction

We apply log-transformation to bytes-related features of the dataset because
they take values in a large range. t-SNE requires the dataset to be consistently
normalized before application. We apply normalization in [0, 1] to all features u:

u01 =
u − min(u)

max(u) − min(u)
,

Our application of Conformal Clustering requires to compute �d P-Values,
where � is the number of points per grid side and d is the number of features.
We use t-SNE, as [8] did before, as a dimensionality reduction algorithm before
clustering.

T-SNE [6] is originally developed as a visualization algorithm for high dimen-
sional data. However, thanks to its ability of keeping far in the low dimensional
projection dissimilar objects of the high dimensional data, and vice versa for
similar objects, it reveals to be a good dimensionality reduction algorithm. We
can trim a few parameters of it, such as perplexity and distance metric. Perplex-
ity may be viewed as the number of effective neighbours each object has in high
dimensional space; distance metric is a similarity measure between objects in
high and low dimensional space. For our experiments we used Euclidean Dis-
tance as a distance metric, and trimmed the value of perplexity. By applying
t-SNE to our preprocessed dataset we obtain Z = {z1, z2, ..., zN}, a 2-D projec-
tion of it.

3.2 Conformal Clustering

CP allows to have a confidence measure on predictions. Given a bag of obser-
vations D = �z1, .., zn−1�, zi ∈ Z, a new object z and a significance level ε, CP
allows to determine if z comes from D with an error on the long run of at most
ε. The only property required by CP is that �z1, .., zn−1� are exchangeable. Note
that exchangeability property is weaker than iid, since:

iid =⇒ exchangeable.
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We define a non-conformity measure A : Z(∗) × Z �−→ R, to be a function
which accepts a bag of objects and an object zi, and returns a scalar representing
how much zi is conform to the other objects. The result of CP is a P-Value pn

and a boolean answer indicating if the new object is conform to D. Follows a
description of the algorithm.

Data: Bag of objects D = �z1, .., zn−1�, non-conformity measure A,
significance level ε, a new object z

Result: P-Value pn, True if z is conform to training objects

Set provisionally zn = z and D = �z1, .., zn�
for i ← 1 to n do

αi ← A(D \ zi, zi)
end
τ = U(0, 1)
pn = #{i:αi>αn}+#{i:αi=αn}τ

n
if pn > ε then

Output True
else

Output False

Algorithm 1. Conformal Prediction using new examples alone

In the algorithm, τ is sampled in Uni(0,1) to obtain a smoothed conformal
predictor, as suggested by [3]. Smoothed conformal predictor is exactly valid,
which means that the probability of error equals ε on the long run. Confidence
level is defined as 1 − ε, which is the probability for a new example generated
by the same distribution to be covered by the prediction set.

Conformal Clustering uses CP to create a set of predictions Γε, which con-
tains the new objects which are conform to old objects in D. These objects are
then clustered by using a neighbouring rule. Follows a description of the algo-
rithm. A d-dimensional grid of � equally spaced points per side is created within
the feature values range; d is the number of features. P-Values are computed
using CP for each point of the grid considering them as new objects z respect
to the bag of training observations Z. Conform points are predicted respect to
a significance value ε. These points are then clustered by using a neighbouring
rule: two points zi, zj are in the same cluster if they are neighbours on the
grid. In this context, significance level ε can be used as a trim to regulate the
depth of the clusters (see Fig. 2). In fact, ε is responsible for the percentage of
instances left outside any clusters; the more of them there are, the less connected
to each other are the remaining ones, which leads to a deeper level of hierarchical
clustering.

Once created the clusters, test objects are associated to them by using the
rule: a test object is from a cluster if its distance from one of the cluster point
is smaller or equal to the grid unit. If a point is associated to more than one
clusters, these clusters are merged.
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Fig. 2. Trimming significance level ε on P-Values grid. Non-conformity measure k-NN
with k = 1 (left) and KDE with h = 0.1 (right) are used. Coloured points are the
predicted ones with respect to a significance level.

3.3 Non-conformity Measures

A non-conformity measure is a function A : Z(∗) × Z → R, where Z(∗) is the
set of possible bags over Z. CP is valid for every non-conformity measure, but
some of them are more efficient; efficiency is later presented in this document as
a performance criterion. In our experiments we used non-conformity measures
k-Nearest Neighbours (k-NN) and Kernel Density Estimation (KDE).

Ai, k-NN non-conformity measure for object zi, given δij to be the j-th
smallest distance between zi and the objects in �z1, ..., zn � \zi, is:

Ai =
k∑

j=1

δij ,

where k is the chosen number of neighbours.
Ai, KDE non-conformity measure for a kernel function K : Rd → R, where

d is the number of features, is:

Ai = −
⎛
⎝ 1

nhd

n∑
j=1

K

(
zi − zj

h

)⎞
⎠ ,

where h is the kernel bandwidth. We here use a Gaussian kernel:

K(u) =
1
2π

e− 1
2u2

.

4 Results

We measure the performances of our system by using two criteria: Purity and
Average P-Value (APV). Purity is an accuracy criterion which measures the
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homogeneity of clusters. It is the weighted sum, for all the clusters, of the per-
centage of objects from the most frequent class respect to the cluster cardinality.
Purity [7] is formally defined as:

Purity(Ω, C) =
1
n

∑
k

max
j

#{ωk ∩ cj},

where Ω = {ω1, ..., ωK} is the set of clusters, and C = {c1, ..., cJ} is the set of
classes. For a parameter set we compare Purity for a fixed ε. The use of Purity is
usually avoided for evaluating clustering algorithms such as K-Means or Hierar-
chical Clustering, because it is highly conditioned by the number of clusters. We
although employ this criterion here because the way we trim Conformal Cluster-
ing parameters does not essentially influence the number of clusters for the same
ε. APV is an efficiency criterion introduced by [8]; efficiency in CP measures the
size of the prediction set Γε. APV is defined to be the mean of P-Values of the
P-Values grid. We want this parameter to be as small as possible.

Table 1. Conformal Clustering respectively with k-NN trimming k (above) and KDE
gaussian kernel trimming bandwidth h (below)

k 1 2 3 4 5 6 7 8 9 10

APV 0.129 0.139 0.141 0.147 0.160 0.167 0.176 0.183 0.189 0.193
Purity (ε = 0.2) 0.990 0.970 0.970 0.960 0.960 0.960 0.960 0.940 0.920 0.920

h 0.001 0.005 0.01 0.05 0.1 0.2 0.3 0.4 0.5 1.0

APV 0.404 0.332 0.299 0.165 0.130 0.138 0.146 0.155 0.165 0.211
Purity (ε = 0.2) 1.000 0.980 1.000 0.990 0.990 0.990 0.970 0.970 0.950 0.920

In our first experiment we apply Conformal Clustering to a t-SNE projection
with perplexity 50. Table 1 shows the results of using non-conformity measures
k-NN and KDE trimming their parameters. The significance level was set to
ε = 0.2. We notice that KDE manages to achieve perfect Purity, with the penalty
of a larger APV. Non-conformity measure k-NN obtains its best Purity and APV
for the value k = 1. K-NN also gets for this value the best APV overall. Further
we will see from Fig. 3 that it is more robust on perplexity than KDE. KDE
efficiency quickly fails for small bandwidth (h < 0.05), which may be due to high
computational precision required by this method. Figure 2 shows k-NN and KDE
predictions on P-Values grid respect to the significance level.

In the second experiment we inspect how t-SNE perplexity influences the
results. We experiment with many values of perplexity, apply Conformal Clus-
tering with k-NN (k = 1) and KDE (bandwidth h = 0.1) non-conformity mea-
sures, and measure APV and Purity. Figure 3 shows the results for k-NN and
KDE non-conformity measures. The trends for Purity are both ascendant as per-
plexity increases, and after approximately 20 they get on average very close to
perfect Purity. As for the efficiency, while for k-NN APV does not look strictly
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Fig. 3. Trimming t-SNE perplexity and evaluating Conformal Clustering for non-
conformity measures KDE (gaussian kernel, bandwidth h = 0.1) in dashed brown
line, and k-NN (k = 1) in blue line. We evaluate criteria APV (left) and Purity (right).

correlated to perplexity (despite a slow increasing trend as perplexity grows),
for KDE APV decreases, which indicates that for KDE perplexity value can be
set larger to get better performances. These results indicate k-NN to be a better
candidate than KDE as a non-conformity measure for Conformal Clustering, but
further experiments on different training sets should investigate this.

5 Conclusions and Future Work

We described here a novel clustering technique called Conformal Clustering,
extending previous research for a multi-class unsupervised learning setting. We
presented its application for clustering network traffic generated by bots. A neigh-
bouring rule was introduced for creating clusters from a prediction set of objects.
Purity and APV criteria were used for evaluating clustering performances. We
also proposed a novel algorithm based on PACF for detecting a single periodicity
in a binary time series.

For future research we plan to develop various criteria of accuracy and effi-
ciency. Our aim is also to reduce the computational complexity of Conformal
Clustering. If the problem does not require reduction of dimensionality then
an application of t-SNE can be avoided. In high dimension a potential alterna-
tive to t-SNE is using an irregular (random) grid instead of the current one,
but this would need some revision of the clustering definition. The methodol-
ogy was shown on the example of two non-conformity measures, each having
two parameters (including perplexity), and we compared their quality. Using
more data, this can be extended further to find the best approach. We also plan
to develop new non-conformity measures related to underlying algorithms like
BotFinder [9]. The experiments for the proposed periodicity detection algorithm
computed PACF for a number of lags close to the period to detect; future studies
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may investigate its performance when using a different number of lags. PACF-
based periodicity detection can be also extended for detecting more than one
period in an instance.

From a security perspective, our dataset contained only network traces from
infected computers. One more direction is to consider extending this approach
to model family-based clusters of botnets and on assessing its ability to detect
bot-infected machines by monitoring real-world unknown network traffic.
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