
Feargus Pendlebury

Machine Learning
for Security in
Hostile Environments

Royal Holloway, University of London
Thesis submitted for the degree of Doctor of Philosophy

Declaration of Authorship

The work presented in this thesis is the result of original research
carried out by myself, in collaboration with others, whilst enrolled
in the Information Security Group as a candidate for the degree
of Doctor of Philosophy. This work has not been submitted for
any other degree or award at any other university or educational
establishment.

Feargus Pendlebury
September, 2021

Publications

The content of this thesis includes ideas and findings previously
presented in the following publications. An asterisk (*) denotes
joint lead authorship.

1. Pendlebury F.*, Pierazzi F.*, Jordaney R., Kinder J., Cavallaro L.
Enabling Fair ML Evaluations for Security. In Proc. of the ACM
Conference on Computer and Communications Security (CCS) (poster).
2018.

2. Pendlebury F.*, Pierazzi F.*, Jordaney R., Kinder J., Cavallaro L.
TESSERACT: Eliminating Experimental Bias in Malware Classi-
fication Across Space and Time. In Proc. of the USENIX Security
Symposium. 2019.

3. Pierazzi F.*, Pendlebury F.*, Cortellazzi J., Cavallaro L. Intriguing
Properties of Adversarial ML Attacks in the Problem Space. In
Proc. of the IEEE Symposium of Security and Privacy (S&P). 2020.

4. Labaca-Castro R., Muñoz-Gonzàlez L., Pendlebury F., Rodosek
G. D., Pierazzi F., Cavallaro L. Universal Adversarial Perturba-
tions for Malware. In arXiv CoRR repo. (preprint). 2021.

5. Arp, D., Quiring E., Pendlebury F., Warnecke A., Pierazzi F.,
Wressnegger C., Cavallaro L., Rieck K. Dos and Don’t of Machine
Learning in Computer Security. To appear in Proc. of the USENIX
Security Symposium. 2022.

6. Barbero F.*, Pendlebury F.*, Pierazzi F., Cavallaro L. Transcend-
ing TRANSCEND: Revisiting Malware Classification in the Pres-
ence of Concept Drift. To appear in Proc. of the IEEE Symposium of
Security and Privacy (S&P). 2022.

Additionally, the author has contributed to the following publica-
tions which further discuss some of the concepts presented in this
thesis.

7. Andresini G., Pendlebury F., Pierazzi F., Loglisci C., Appice A.,
Cavallaro L. INSOMNIA: Towards Concept-Drift Robustness in
Network Intrusion Detection. In Proc. of the ACM Workshop on
Artificial Intelligence and Security (AISec). 2021.

8. Kan Z., Pendlebury F., Pierazzi F., Cavallaro L. Investigating
Labelless Drift Adaptation for Malware Detection. In Proc. of the
ACM Workshop on Artificial Intelligence and Security (AISec). 2021.

iv

Research for publications ##1–6 and ##7–8 were partly carried out
while a visiting scholar at King’s College London and University
College London, respectively. Research for publication #4 was
partly carried out while a research visitor at the Alan Turing In-
stitute and research for publications ##7–8 was partly carried out
while a research intern at the International Computer Science Insti-
tute, Berkeley.

All work has been supported by the EPSRC and the UK govern-
ment as part of the Centre for Doctoral Training in Cyber Security
at Royal Holloway, University of London (EP P009301/1).

Acknowledgements

“Alone we can do so little.
Together we can do so much.”

—Helen Keller

Little can be achieved from working in isolation and it is my for-
tune to have been supported by many great researchers, engineers,
and friends. While there are bound to be some omissions below, I
will do my best to try and give props where they are due.

Firstly I must thank my supervisor Lorenzo Cavallaro. In his
thesis he humbly wrote: "I am far from being a good researcher, but
I will do all of my best to become it". I can only confirm that he has
achieved this many times over and that it can only be my goal to
become one iota the talented, hard-working, and kind-spirited
researcher that he is.

Additionally I am beholden to Johannes Kinder who supervised
me alongside Lorenzo before moving to a new home in Munich,
and who bestowed upon me much invaluable wisdom. He remains
the coolest and most unflappable researcher I’ve met yet.

I am indebted to the heavyweight tag team titleweight hold-
ers: Kenny Paterson for supervising the first year of my PhD and
Martin Albrecht for supervising the final stretch, and to both of
them for remaining sources of wisdom, inspiration, and guidance
throughout my studies.

I am lucky to have had the chance to work alongside Fabio Pier-
azzi, a great friend who mentored me on the science and art of
paper writing, and greatly accelerated my growth as a researcher.

I am grateful to Emil Tan who took me further down the rabbit
hole of security and encouraged me to pursue a PhD on the topic,
and to the oncology patient at Mount Alvernia who first intro-
duced me to computer science years before—without these acts of
serendipity, I would not be here today.

Warm thanks especially go to Suman Jana, Jorge Blasco Alis,
and Carlos Cid for agreeing to act as my PhD committee and for
reading my work with scrutiny.

I owe much to the various visits and collaborations throughout the
PhD. For the endless laughs, insightful conversations, and com-
forting exchange of radical thought, I thank friends from the Alan
Turing Institute: George Elder, Sam Van Stroud, Victor Darvariu,
Alicia Cork, Markus Löning, and Tiejun Wei.

I thank David Freeman from Facebook for giving me the oppor-
tunity to apply machine learning to real world security issues and
to Daniel Bernhardt, Alexander Erofeev, Mikhail Pershin, Michael

vi

Blind, Sharon Zheng, Christoph Besel, Estee van der Walt, Mark
Atherton, Nedyalko Prisadnikov, Maria Kirichun, Despoina Magka,
Cihad Öge, Alexis Woo, Michał Staszewski, Isaac Kamlish, Vikram
Padval, Alex Vaystikh, and everyone else that I had the great for-
tune of learning from while interning there.

I am very grateful to Sadia Afroz and Michael Mahoney at ICSI
and UC Berkeley for welcoming me into their group, as well as
Francisco Utrera and Yiğitcan Kaya for the great brainstorming
sessions while working on the TrojAI competition.

Additionally I thank King’s College London and University
College London for hosting me as a visiting scholar and allowing
me to follow Lorenzo on his journey as a professor.

I would also like to acknowledge my coauthors and collabora-
tors for their tenacity and insight during our work together: Sadia
Afroz, Giuseppina Andresini, Annalisa Appice, Daniel Arp, Yavuz
Bakman, Federico Barbero, Brano Bosansky, Lorenzo Cavallaro,
Zhi Chen, Jacopo Cortellazzi, Ben Erichson, Roberto Jordaney,
Zeliang Kan, Yiğitcan Kaya, Johannes Kinder, Raphael Labaca-
Castro, Corrado Loglisci, Samaneh Mahdavifar, Michael Mahoney,
Luis Muñoz-González, Fabio Pierazzi, Erwin Quiring, Harival-
labha Rangarajan, Gabi Dreo Rodosek, Petr Somol, Flavio Toffalini,
Liang Tong, Francisco Utrera, Yevgeniy Vorobeychik, Gang Wang,
Alexander Warnecke, Christian Wressnegger, Da Yang, Limin Yang,
Yaoqing Yang, and Ziqi Yang.

I am most fortunate to have embarked on the PhD journey with
a CDT cohort, who have irreversibly enriched my life: Fernando
Virdia, Rob Markiewicz, Eamonn Postlethwaite, Rory Hopcraft,
Pallavi Sivakumaran, Ashley Fraser, and Pete Beaumont.

I also thank my labmates and CTF teammates for their great
company and for their aid in scheming about a future farm life:
Simon, Roberto, Claudio, Gio, Dusan, James, Jason, Blake, Dun-
can, Guillermo, Santanu, Emanuele, Salah, and other members of
the oldskool, plus of course Federico, Jacopo, Mark, Giulio, and
members of the new.

I am grateful to my mum Tessa and sister Gemma for their con-
sistent support and belief throughout the years and to my friends
from outside academia (i. e., the real world), particularly Tawqir,
Kosi, Vasu, Neil, and Tom,1 for the many joyful memories and for 1 with special mention to

Pebble and Calvinreminding me of what’s important in life.
Finally I especially thank my partner Steph, whose patience and

loving encouragement form the structural support on which the
following pages sit—the end of this thesis marks the start of many
more adventures together.

Dedicated to the memory of

Don Pendlebury

and
Kai Luotsinen

Abstract

The potential for machine learning to change the world is unde-
niable. More data, better resources, and advances in algorithms
have led to multiple breakthroughs in fields such as computer vi-
sion and natural language processing. Recently, efforts have been
made to apply these methods to detection tasks in computer se-
curity where a system detects the presence of malicious objects to
prevent them from causing harm to users. However the problem is
challenging, primarily due to the inherently hostile environments that
security detectors are deployed to. In these settings, members of
the malicious class actively try to avoid detection, leading to drift
in the data distribution over time that violates core assumptions
of machine learning. Furthermore, adversaries can apply power-
ful algorithms to search for adversarial examples: objects which are
confidently misclassified as benign by a detector while retaining
malicious functionality.

In this thesis we explore whether machine learning is ready to
be used in the security domain, given this hostile environment.
We outline how adversarial behavior manifests in security data,
providing novel perspectives on the relationship between concept
drift and adversarial examples, as well as between feature-space
and problem-space adversarial attacks. These lead us to devise a
new problem-space attack demonstrating that adversarial examples
are a realistic and practical threat against malware detectors.

We discuss the difficulty in performing fair, informative eval-
uations of defenses in such a dynamic and volatile environment,
showing how the evaluations of previous state-of-the-art detectors
have been inflated by experimental bias. Through an examination
of these issues we construct actionable guidance on how to alleviate
bias, allowing for clearer comparisons between drift mitigations.
Finally, we propose a framework for classification with rejection
based on conformal prediction and conformal evaluation theory
which is able to identify and quarantine drifting examples, improv-
ing on previous work in terms of performance and runtime cost.

Ultimately we find that the benefits of machine learning remain
a tantalizing solution for security detection. While challenges re-
main, the application of mechanisms to identify, track, and adapt to
drifting and adversarial inputs—if realistic evaluations are used to
assess them—can greatly raise the bar for attackers.

Contents

PA R T I P R O L O G U E

1 Overview 3

2 Machine Learning and Security 9

PA R T I I A D V E R S A R I A L I N T E R A C T I O N S

3 Characterizing Concept Drift in Security 25

4 Realizable Adversarial Attacks in Security 33

PA R T I I I D E T E C T I O N I N A H O S T I L E E N V I R O N M E N T

5 Limiting Experimental Bias in ML for Security 75

6 Identifying and Rejecting Drifting Examples 121

7 Conclusions 157

Bibliography 159

List of Figures

2.1 Illustration of classification and clustering tasks 9

2.2 Illustration of a binary classifier’s decision regions 10

2.3 Illustration of underfitting and overfitting 11

2.4 Receiver Operating Characteristic (ROC) curve 12

2.5 Intuition for Precision and Recall 13

2.6 Illustration of adversarial points 16

2.7 Illustration of an evasion attack 17

2.8 Illustration of a backdoor attack 18

2.9 Robustness curve 21

3.1 Illustration of drift emerging from adversarially induced errors. 27

3.2 Illustration of the manifold hypothesis 28

3.3 Illustration of dataset shift and adversarial examples as manifolds 29

4.1 Analogy between side-effect features and projection 43

4.2 Performance of SVM and Sec-SVM in absence of adversarial attacks 58

4.3 Cumulative distribution of features added to adversarial malware 59

4.4 Statistics of generated evasive malware variants 60

4.5 Violin plots of injection times per adversarial app 61

4.6 Input-specific vs. UAP white-box attacks against SVM and DNN 62

4.7 Frequency of feature perturbations per transformation, by type 64

4.8 Distribution of L0 norm perturbation per transformation 64

4.9 Limited knowledge UAP attack vs. Drebin classifier 65

4.10 Adaptive attack vs. Drebin-DNN classifiers 66

5.1 Composition of spatio-temporally consistent dataset 80

5.2 Spatial experimental bias in testing 84

5.3 Motivational example for training bias 85

5.4 Spatial experimental bias in training 86

5.5 Tesseract workflow and the evaluation cycle 93

5.6 Time decay due to experimental bias 95

5.7 Tuning improvement gained with Algorithm 3 96

5.8 Delaying time decay: incremental retraining 99

5.9 Delaying time decay: active learning 100

5.10 Delaying time decay: classification with rejection 101

5.11 Prevalence of constraint violations in security, survey results 103

5.12 Distribution of papers per year for constraint violations survey 103

5.13 Common pitfalls in machine learning in computer security 106

5.14 Comparison between ROC and PR curves on imbalanced data 111

xiv

5.15 Distribution of papers per year for pitfalls survey 115

5.16 Prevalence of machine learning pitfalls in security, survey results 116

6.1 Possible NCMs for different classification algorithms 124

6.2 Nested set intervals showing credibility and confidence 128

6.3 Calibration splits for different conformal evaluators 130

6.4 Illustration of Transcend thresholding procedure 135

6.5 Illustration of Transcend test-time procedure 137

6.6 Covariate shift in dataset from Jordaney et al. [139] vs. this work 139

6.7 Comparison of three new proposed conformal evaluators 141

6.8 Comparison of evaluators with alternative quality metrics 142

6.9 Comparison to CP-Reject [175] and DroidEvolver [316] 147

6.10 Performance for alternative malware domains and algorithms 148

6.11 Comparison to CP-Reject [175] for alternative malware domains 149

6.12 AUT(F1, 48m) for CCE under varying sizes of k 152

6.13 Alternative optimization prioritizing kept rate over F1-Score 153

List of Tables

1 Chapter 4 symbols xvii
2 Chapter 5 symbols xviii
3 Chapter 6 symbols xix

4.1 Problem-space evasion attacks compared in different domains 48

4.2 Comparison of defenses against problem-space UAP attacks 67

5.1 Composition of dataset in Chapter 5 82

5.2 Impact of spatial and temporal bias in unrealistic settings 83

5.3 AUT performance with difference tuning parameters 98

5.4 Performance-cost comparison of time decay delay methods 102

6.1 Complexity and runtimes for different conformal evaluators 129

6.2 AUT(F1, 48m) of evaluators with different quality metrics 143

6.3 Comparison of different threshold search methods 145

6.4 AUT(F1, 7m) to compare against vanilla TCE 150

List of Symbols

Symbols from Chapter 4

Table 1 is a legend of the main symbols used throughout Chapter 4.

Symbol Description

Z Problem space (i.e., input space).
X Feature space X ⊆ Rn.
Y Label space.
ϕ Feature mapping function ϕ : Z −→ X .

hi
Discriminant function hi : X −→ R that assigns object x ∈ X a score in R (e.g., distance from hyperplane) that rep-
resents fitness to class i ∈ Y .

g
Classifier g : X −→ Y that assigns object x ∈ X to class y ∈ Y . Also known as decision function. It is defined based
on the output of the discriminant functions hi , ∀i ∈ Y .

Ly Loss function Ly : X ×Y −→ R of object x ∈ X with respect to class y ∈ Y .

fy,κ
Attack objective function fy,κ : X × Y ×R −→ R of object x ∈ X with respect to class y ∈ Y with maximum confi-
dence κ ∈ R.

fy Compact notation for fy,0.
Ω Feature-space constraints.
δ δ ∈ Rn is a symbol used to denote a feature-space perturbation vector.
η Side-effect feature vector.

T Transformation T : Z −→ Z .
T Transformation sequence T = Tn ◦ Tn−1 ◦ · · · ◦ T1.
T Space of available transformations.
Υ Suite of automated tests τ ∈ Υ to verify preserved semantics.
Π Suite of manual tests π ∈ Π to verify plausibility. In particular, π(z) = 1 if z ∈ Z is plausible, else π(z) = 0.
Λ Set of preprocessing operators A ∈ Λ for which z ∈ Z should be resistant (i.e., A(T(z)) = T(z)).
Γ Problem-space constraints Γ, consisting of {Π, Υ, T , Λ}.
D Training dataset.
w Model hyper-parameters.
Θ Knowledge space.

θ
Threat model assumptions θ ∈ Θ; more specifically, θ = (D,X , g, w). A hat symbol is used if only estimates of pa-
rameters are known. See Section 2.3 for more details.

Table 1: Chapter 4 symbols.

xviii

Symbols from Chapter 5

Table 2 is a legend of the main symbols used throughout Chapter 5.

Symbol Description

gw Short version of goodware.
mw Short version of malware.
ML Short version of Machine Learning.
D Labeled dataset with malware (mw) and goodware (gw).
Tr Training dataset.
W Size of the time window of the training set (e. g., 1 year).
Ts Testing dataset.
S Size of the time window of the testing set (e. g., 2 years).
∆ Size of the test time-slots for time-aware evaluations (e. g., months).

AUT(f ,N)
Area Under Time, a new metric we define to measure performance over time decay and compare different solu-
tions (subsection 5.5.2). It is always computed with respect to a performance function f (e. g., F1-Score) and N is the
number of time units considered (e. g., 24 months)

σ̂ Estimated percentage of malware (mw) in the wild.
ϕ Percentage of malware (mw) in the training set.
δ Percentage of malware (mw) in the testing set.
P Performance target of the tuning algorithm in subsection 5.5.3; it can be F1-Score, Precision (Pr) or Recall (Rec).

ϕ∗P
Percentage of malware (mw) in the training set, to improve performance P on the malware (mw) class (subsec-
tion 5.5.3).

E Error rate (subsection 5.5.3).
Emax Maximum error rate when searching ϕ∗P (subsection 5.5.3).
Θ Model learned after training a classifier.
L Labeling cost.
Q Quarantine cost.
P Performance; depending on the context, it will refer to AUT with F1 or Pr or Rec.

Table 2: Chapter 5 symbols.

xix

Symbols from Chapter 6

Table 3 is a legend of the main symbols used throughout Chapter 6.

Symbol Description

X Feature space X ⊆ Rn.
Y Label space.
z Example pair (x, y) ∈ X ×Y .
z∗ Previously unseen testing example.
ŷ Predicted class g(z∗).
az Nonconformity score output by an NCM for z.
pz Statistical p-value for z.
py

z Statistical p-value for z, calculated with respect to class y ∈ Y (used in label conditional calculations).
τy A rejection threshold τy ∈ [0, 1] for class y ∈ Y .
T The set of all per-class rejection thresholds { τy ∈ [0, 1] | y ∈ Y }.
B Bag of examples Hz1, z2, ..., znI.
d Distance function d(z, z′).
ẑ Point predictor ẑ(B).
A Nonconformity measure (NCM) usually composed of a distance function and point predictor.

S
Collection of nonconformity scores computed in elements of B, relative to other elements in B, S = HA(B \ HzI, z) :
z ∈ BI.

g Classifier g : X −→ Y that assigns object x ∈ X to class y ∈ Y . Also known as the decision function.
ε Significance level used in conformal prediction to define prediction region with confidence guarantees.
NCM Nonconformity measure.
TCE Transductive Conformal Evaluator.
ICE Inductive Conformal Evaluator.
CCE Cross-Conformal Evaluator.

Table 3: Chapter 6 symbols.

Code Availability

Adversarial Program Generation

Chapter 4 proposes a novel Android evasion attack based on au-
tomated software transplantation. We release the code and data of
our approach to other researchers by responsibly sharing a private
repository. The project website with instructions to request access is
at: https://s2lab.cs.ucl.ac.uk/projects/intriguing.

Tesseract Evaluation Framework

Chapter 5 discusses Tesseract, our framework for conducting
time-aware evaluations free from spatio-temporal bias. We make
Tesseract’s code and data available to the research community to
promote the adoption of a sound and unbiased evaluation of clas-
sifiers. The Tesseract project website with instructions to request
access is at: https://s2lab.cs.ucl.ac.uk/projects/tesseract.

Transcendent Drift Identification

Chapter 6 introduces Transcendent, an extension of the Transcend
framework [139] for identifying and rejecting drifting examples.
To assist researchers and practitioners alike, we release the code of
Transcendent as open source, along with the data used in the em-
pirical evaluations, to aid with the scalable identification and reme-
diation of concept drift: https://s2lab.cs.ucl.ac.uk/projects/
transcend.

A note on impact. To date, code from these projects has been used
by groups from across various academic and industrial institutions,
including: the Alan Turing Institute, Beijing University of Posts
and Telecommunications, Birla Institute of Technology and Science,
Boise State University, Capital One, Carnegie Mellon University,
Columbia University, Czech Technical University, Deakin Univer-
sity, the Federal University of Paraná, Fudan University, Georgia
Tech, Guangzhou University, the Indian Institute of Information

https://s2lab.cs.ucl.ac.uk/projects/intriguing
https://s2lab.cs.ucl.ac.uk/projects/tesseract
https://s2lab.cs.ucl.ac.uk/projects/transcend
https://s2lab.cs.ucl.ac.uk/projects/transcend

xxii

Technology and Management, the Institute for Information Indus-
try, the International Computer Science Institute, the Hong Kong
Polytechnic University, the Hong Kong University of Science and
Technology Library, Huazhong University of Science and Tech-
nology, Karlsruhe Institute of Technology, King’s College London,
Korea University, the MITRE Corporation, Nanjing University, Na-
tional Cybersecurity Agency of France, the National Institute of
Technology, National University of Defense Technology, New York
University, Northeastern University, Northwest University, Orange
Labs, Osaka University, PSG College of Technology, Queen’s Uni-
versity Belfast, Reichman University , Rice University, Royal Hol-
loway University of London, the Swinburne University of Technol-
ogy, Tsinghua University, TU Dublin, TU Berlin, TU Braunschweig,
TU Munich, University of Adelaide, University of Bari Aldo Moro,
University of British Columbia, University of Cagliari, Univer-
sity of California Berkeley, University of California Santa Barbara,
University of Cambridge , University Carlos III of Madrid , Uni-
versity College London, University of the Fraser Valley, University
of Illinois at Urbana-Champaign, University of Jinan, University
of Luxembourg, University of Michigan, University of New South
Wales, University of Oregon, University of Rennes 1, University of
Toronto, University of Virginia, University of Wisconsin-Madison,
VIT Bhopal, Washington State University, Washington University
in St. Louis, Wuhan University, Xidian University, Zhejiang Gong-
shang University, and Zhejiang University.

[...] you don’t understand things. You
just get used to them.

John von Neumann

Part I:

Prologue

1

1 Overview

Machine learning is certainly changing the world. Wider
access to computational resources, enormous repositories of data,
and novel concepts and system architectures have paved the way
for multiple breakthroughs in various research fields such as
computer vision [156, 127, 261] and natural language process-
ing [278, 24, 298, 79]. These advances are leading to new technology
previously confined to science fiction, including self-driving vehi-
cles [41], smart lenses [151, 180], and universal translators [285, 18]. Machine learning has clear power

and potential...The effect of this technology on society may be profound. By
playing a part in reducing marginal costs and the need for labor
exploitation through scalability and automation, learning-based
technologies could facilitate a transition to postcapitalist soci-
ety [189, 25]. At the other extreme, machine learning has also
opened the doors to new methods of surveillance [117, 95], cen-
sorship [262, 205, 29, 238], and disinformation [3, 60].

Given the clear power and potential of machine learning, it
seems natural to apply the same methodologies to solve detection
tasks in information security. In detection tasks, a set of malicious
objects need to be identified and separated from a collection of
benign objects to prevent them from causing harm to users (e.g.,
predicting whether a new email is spam or legitimate). The de-
tection task has many similarities to well-studied tasks from the
aforementioned fields, such as image classification in computer vi-
sion or named entity recognition in natural language processing, so
the problem itself seems well-suited for machine learning. ...which motivates its application

to security detection tasks.As well as performance gains in accuracy, machine learning
has the potential to automate expensive manual processes, such as
reverse engineering of individual malware, freeing up resources
and allowing for more flexibility in responding to threats. The
power to generalize to new and unforeseen threats makes machine
learning-based approaches more resilient than previous rule-based
methods, and the ability to extract and explain patterns in data can
help analysts better understand the threat environment [305] and
can even be used to support older solutions by generating highly-
precise, yet brittle, signatures [233].

Indeed there has been progress, with numerous success stories
across various research areas such as network intrusion detec-
tion [83, 196, 13], code authorship attribution [2, 136, 44], and web

4 machine learning for security in hostile environments

security [274, 134, 149]. A particularly active area as been mal-
ware detection, for which solutions have been proposed to detect
malware for Android [187, 19, 7, 195], Windows PE [11, 232, 281],
Javascript [70, 153, 92], and PDF [271, 272, 54, 265] domains.

Such solutions are not just academic, with the security teams of
large technology corporations deploying learning-based solutions
to protect their services. For example, Facebook use machine learn-
ing to detect abusive accounts which are used spread spam, mal-
ware, and disinformation [317, 125] while Google [116], Apple [15],
and Microsoft [192] all use machine learning-based malware detec-
tors to prevent malicious apps gaining traction on their platforms.

However, this progress has not been without challenges, primarily
due to the hostile environments that security detectors are deployed
to. Adversaries that seek to manipulate and deceive learning-based
systems certainly exist for traditional tasks, for example, an at-
tacker may add a specially-crafted sticker to a traffic sign to cause
the recognition model of a self-driving vehicle to misclassify it as
a different sign [89]. However, in security detection tasks the en-

However, security detectors face
hostile environments where adver-
saries seek to evade detection...

vironment is inherently hostile, that is, the positive class which is
the target of the detection has agency and does not want to be detected.
Consider again the traffic sign example. All other things being
equal, if an update is pushed to the recognition model to improve
it in some way, the distribution of traffic signs does not change—
a stop sign is still a stop sign and a one-way sign still a one-way
sign. The signs themselves have no agency—signs for crossroads
don’t try to look like signs for roundabouts, or vice-versa. Unfor-
tunately, the same cannot be said for security detection tasks. For
these, the distribution of the positive class responds to any change
in the detection model. These changes can be sudden and abrupt,
or appear as a gradual evolution over time. Unlike the traffic signs,
the definition of the malicious class changes: what was once con-
sidered ‘definitely malicious’ may now look ‘possibly malicious’ or
even ‘certainly benign’. In order to ensure their operations remain
effective and profitable, malicious actors utilize new obfuscation
techniques to evade malware detectors, alter packet statistics to
evade network intrusion detectors, and mimic legitimate social
media posts to evade spam detection.

...causing drift in the data distri-
bution over time, violating i.i.d.

This evolution of the malicious class over time is a driving fac-
tor in the presence of dataset shift, or concept drift, in security data,
where the data distribution diverges from the distribution it was
originally modeled as. Although this has been a hallmark of se-
curity data long before artificial intelligence was applied to secu-
rity tasks, it is particularly problematic for systems using machine
learning algorithms as these algorithms typically rely on the as-
sumption that new data and the data used for training the model
are identically and independently drawn from the same joint dis-
tribution (i.i.d.). As this assumption weakens over time, the model
performance begins to deteriorate.

overview 5

There are further challenges still. As hinted at earlier, while the
traffic sign recognition setting is not itself inherently hostile, ma-
licious actors can introduce ways to fool the classification model
and disrupt the data distribution. This is possible because ma-
chine learning algorithms suffer from a suite of limitations centered
around the fact that the way they model the classification problem
does not perfectly align with our human intuition [132]. That is,
there exist examples of say, stop signs, which appear like stop signs
to a human but are confidently classified as a one-way sign by the
recognition model. Furthermore, an adversary can purposely craft

Additionally, recent strong at-
tacks against ML systems using
adversarial examples...

perturbations which when applied to correctly classified examples,
will transform them into these misclassified variants—one such at-
tack uses a specially crafted sticker, as mentioned previously. When
crafted in this way, these problematic examples are called adversarial
examples (note that the detection of these perturbations is itself a
security detection task).

Of course, these attacks are also possible against security detec-
tors that use machine learning. There exist malware which looks
like malware to a human, but is misclassified as goodware by the
model, and powerful attacks exist to help adversaries find and
abuse such examples. While advantageous in so many ways, the ...also affect security detectors,

exacerbating drift.use of machine learning for detection has also opened up a whole
new attack surface for attackers and as these vulnerabilities are
abused and expanded on, the severity and speed of concept drift is
further exacerbated.

This thesis explores whether machine learning is ready to be used
in the security domain, given the hostile environment. It outlines
how concept drift and adversarial examples manifest in security
data and the performance degradation they can induce in machine
learning-based detectors; it discusses the difficulty of performing
fair, informative experimentation in such a dynamic and volatile
environment; and it proposes mitigations that can be deployed to
identify and adapt to the challenging drifting conditions.

1.1 Thesis Organization

This thesis is in three parts...

The thesis is structured in three parts, first introducing the nec-
essary background (part I), then characterizing the hostile envi-
ronment faced by learning-based security detectors (part II), and
finally exploring the design and evaluation of defenses given this
environment (part III). Here we give a brief roadmap through the
individual chapters.

6 machine learning for security in hostile environments

1.1.1 Part I: Prologue

In the first part we define the preliminaries. We begin here, in
Chapter 1, outlining the problem and providing some orientation
for the chapters to come and the contributions therein.

...the first reviews the fundamen-
tals...

Chapter 2 introduces the fundamental concepts of machine learning
and security which will help the reader interpret findings from the
later chapters. It includes some context on how machine learning
algorithms are used for security, and on the security of machine
learning algorithms.

1.1.2 Part II: Adversarial Interactions

The second part provides a characterization of the ‘hostile envi-
ronment’ and focuses on understanding the primary consequences
of adversarial interactions with machine learning-based security
systems: concept drift and adversarial examples.

Chapter 3 includes an overview of concept drift in security and
provides a new perspective on the relationship between drift and
adversarial examples. While concept drift is often treated as a ‘nat-
ural’ phenomenon, it is evident that concept drift is driven by ad-
versarial behavior [27] and that there is an intrinsic relationship
between the two. In this chapter we present a theoretical framework
to unify these different phenomena, which motivates research for
their joint mitigation.

...the second characterizes concept
drift and adversarial examples in
security...

Chapter 4 discusses how adversarial examples can be crafted in
security detection settings where the generation of adversarial ex-
amples is far more constrained than in traditional domains such as
computer vision. We propose a novel formalization for describing
realizable evasion attacks in the problem-space, and define a com-
prehensive set of constraints for their generation: available trans-
formations, preserved semantics, robustness to preprocessing, and
plausibility. We demonstrate how the formalization facilitates the
design of stronger attacks, and propose a novel problem-space at-
tack on Android malware that overcomes past limitations. Findings
from this chapter have been previously published in:

• Pierazzi F.*, Pendlebury F.*, Cortellazzi J., Cavallaro L. Intriguing
Properties of Adversarial ML Attacks in the Problem Space. In
Proc. of the IEEE Symposium of Security and Privacy (S&P). 2020.

• Labaca-Castro R., Muñoz-Gonzàlez L., Pendlebury F., Rodosek
G. D., Pierazzi F., Cavallaro L. Universal Adversarial Perturba-
tions for Malware. In arXiv CoRR repository (preprint). 2021.

overview 7

1.1.3 Part III: Detection in a Hostile Environment

In the final part we reason about how to proceed given the hostile
environment that learning-based detectors face. We establish how
to design fair, realistic evaluations of defenses and then discuss
different methods for mitigating concept drift in malware data
distributions.

...and the third provides guidance
on ensuring the fair and realistic
evaluation of defenses...

Chapter 5 discusses sources of experimental bias that can affect the
evaluation of machine learning-based detectors, many of which are
caused by idiosyncrasies of the security setting. To begin with we
identify spatio-temporal biases that have afflicted evaluations of many
state-of-the-art Android malware detectors and present Tesseract, a
framework for ensuring fair evaluations free from these biases. We
explore different mitigations for concept drift such as incremental
retraining, active learning, and classification with rejection, and
show how Tesseract can be used to compare cost and performance
across these different methods. Finally we look beyond Android
malware and assess the prevalence of these biases in past work on
security detection. Then we broaden the discussion further, pre-
senting ten pitfalls which have frequently not been controlled for
in prior work and recommendations for removing them. Findings
from this chapter have been previously published in:

• Pendlebury F.*, Pierazzi F.*, Jordaney R., Kinder J., Cavallaro L.
Enabling Fair ML Evaluations for Security. In Proc. of the ACM
Conference on Computer and Communications Security (CCS) (poster).
2018.

• Pendlebury F.*, Pierazzi F.*, Jordaney R., Kinder J., Cavallaro L.
TESSERACT: Eliminating Experimental Bias in Malware Classi-
fication Across Space and Time. In Proc. of the USENIX Security
Symposium. 2019.

• Arp, D., Quiring E., Pendlebury F., Warnecke A., Pierazzi F.,
Wressnegger C., Cavallaro L., Rieck K. Dos and Don’t of Machine
Learning in Computer Security. To appear in Proc. of the USENIX
Security Symposium. 2022.

...as well as exploring promising
drift mitigation strategies.

Chapter 6 presents Transcendent, a framework for classification
with rejection based on Transcend [139], a rejection strategy based
on conformal evaluation theory—an extension of conformal pre-
diction theory adapted for drifting settings. We provide a formal
treatment of rejection using conformal evaluation, gaining a better
understanding of the theoretical reasons behind its success. We pro-
pose two new conformal evaluators—the components that provide
statistical support for the rejections—which match or surpass the
performance of the original while significantly decreasing the com-
putational overhead. These improvements make Transcend [139] a
sound and practical solution for drift mitigation for the first time,

8 machine learning for security in hostile environments

and we demonstrate its efficacy for detecting drifting examples
for Android, Windows PE, and PDF malware. Findings from this
chapter have been previously presented in:

• Barbero F.*, Pendlebury F.*, Pierazzi F., Cavallaro L. Transcend-
ing TRANSCEND: Revisiting Malware Classification in the Pres-
ence of Concept Drift. To appear in Proc. of the IEEE Symposium of
Security and Privacy (S&P). 2022.

2 Machine Learning and Security

2.1 Fundamentals
2.2 Core Concepts in the Security

of Machine Learning

2.3 Core Concepts in Machine
Learning for Security

2.4 Summary

There are two sides to machine learning and security. In the
first, machine learning can be applied to security tasks, such as for
malware detection or network intrusion detection—this is machine
learning for security. In the second, machine learning algorithms
themselves have vulnerabilities which can be exploited, require
security assessments, and necessitate defenses to keep them from
being exploited—this is the security of machine learning.

In this chapter we introduce some machine learning background
and a set of core concepts for both the security of machine learning
and machine learning for security which should support the reader
in interpreting the findings from later chapters.

2.1 Fundamentals

We next introduce the concept of the machine learning task and the
essential phases that constitute a typical machine learning work-
flow. We will periodically revisit a security perspective to provide
intuition for how machine learning is specifically applied to, and
affected by, the security domain.

2.1.1 Machine Learning Tasks

In the most general sense, machine learning is the process by which
algorithms solve tasks using a given dataset without being explic-
itly programmed how to do so.

(a) Supervised classification task

(b) Unsupervised clustering task

Figure 2.1: Examples of class
regions and clusters learnt by
supervised vs. unsupervised
algorithms.

Most commonly, these tasks are either supervised or unsupervised.
Supervised tasks are those for which the algorithm is supplied a set
of examples: inputs with corresponding labels. Examples of super-
vised learning tasks are classification, in which the target labels are
categorical, and regression, in which the target labels are numeric.
In both cases the algorithm aims to learn a relationship between the
inputs and target labels in order to infer labels for unlabeled input
at a future date. Figure 2.1(a) shows how the space of examples
might be partitioned into decision regions by a supervised learner.
In unsupervised tasks, the label information is not provided. A

10 machine learning for security in hostile environments

common unsupervised task is clustering, in which an algorithm
groups inputs together based using some notion of similarity, as
illustrated in Figure 2.1(b).

There are different types of ma-
chine learning task...

Note that these are not the only categories of task. For example,
in semi-supervised learning, the algorithm is given a small amount of
labeled data combined with a large amount of unlabeled data. This
is a promising solution for solving supervised tasks when large
quantities of ground truth labels are difficult to obtain.

...such as spam detection or mal-
ware classification in security.

Security Perspective A classification task in security might be the
classification of Twitter messages as either benign or spam [206],
whereas an example of clustering would be the familial analysis of
malware [90]. Obtaining labels is particularly difficult in security;
for example, analyzing whether applications are truly malware is
a lengthy, manual process which requires specialist expertise. This
makes variants of semi-supervised learning especially attractive.
Nevertheless, while many—if not all—algorithms are vulnerable
to adversarial interactions to some degree, in this thesis we focus
on supervised tasks—and classification specifically—as this is the
most common formulation of the security detection problem (e.g.,
classifying attacks vs. benign examples).

2.1.2 Classifier Design and Evaluation

In the classification task, the dataset consists of n pairs of inputs
and their corresponding labels, e.g., { (x1, y1), ..., (xp, yp) } where
each input xi is a vector in the space X ⊆ Rr, each of the r elements
is a feature describing some attribute of the example, and each label
y ∈ Y is a categorical value denoting the ground truth.

Given this dataset we assume there is some optimal function
g∗ : X −→ Y which is able to infer the correct label given any xi.
While determining g∗ is computationally intractable in general, a
machine learning classification model, or classifier, g : X −→ Y can
be used to approximate it.

Figure 2.2: Binary SVM classi-
fier showing margins, decision
boundary, and class regions.

The classifier builds on a discriminant function h : X × Y −→ R

which outputs a real number h(x, j), that represents the fitness of
object x to class j ∈ Y . Higher outputs of the discriminant function
hj represent better fitness to class j, so to convert this score to a
label, the class with the maximum score is chosen, i. e., g(x) = ŷ =

arg maxj∈Y h(x, j).
In binary classification, often a single score is output represent-

ing the fitness of x to the positive class (e.g., the malicious class).
A threshold is then used to determine the cutoff between the two
classes, which can then be tuned. In classification the goal is to

learn a function that distinguishes
between classes of data (e.g.,
malicious vs. benign classes).

Figure 2.2 shows the decision region for a support vector ma-
chine (SVM) [66] with a polynomial kernel (used for fitting non-
linearly separated data). To approximate g∗, SVMs try to maximize
the margin between each class—here the margin is shown by the

machine learning and security 11

dotted line. Between the two margins is the decision boundary (solid
line); for SVMs the discriminant function h(x) represents the dis-
tance from this decision boundary to x which will be classified as
the corresponding class depending on which side of the decision
boundary it falls.

To be useful, a model must gener-
alize from training data to unseen
test data.

Generalization In order to learn the relationship between X and
Y and approximate g∗, the dataset is partitioned to create a training
set, for learning itself, and a test set, for evaluation. By partitioning
the data, we can ensure that the classifier does not overfit to the
dataset, because it must generalize from the training set to the test
set in order to perform well.

Note that for lab-based evaluations, the test data represents the
set of real-world data for which ground truth labels are unknown.
Therefore, there is still a risk of tuning the classifier to overfit this
test set which will inflate our expectations of performance in the
wild. To avoid this, the training dataset can be further partitioned
into a proper training set and a validation set used to evaluate the
performance, with the test data being held out for a final evalua-
tion which should closely approximate the performance on real,
previously-unseen data.

Figure 2.3 shows a learning curve where a model’s prediction
error is plot as a function of the model complexity (e.g., as training
continues over multiple epochs in deep learning). When the model
is not complex enough, it underfits the training data and increasing
the model complexity should improve performance on future vali-
dation and test data. When the model is too complex, it can overfit
the training data, experiencing increasing generalization error on
the validation data. The goal is to find the optimal balance between
the two, depicted by the dotted line.

Training Error
Validation Error

Model complexity

Er
ro

r

Best Fit

Underfitting Overfitting

Figure 2.3: Learning curve
showing model error as a func-
tion of complexity and the
resulting under/overfitting.

The assumption underpinning this ability to generalize is that
the training, validation, and test sets are all independently drawn
from the same joint distribution (i.i.d.), and is a core assumption
for classification. Furthermore, there is an assumption that the
dataset is representative of the true data distribution that will be
encountered in the wild.

Inductive Bias Different classification algorithms have different
inductive biases: the assumptions the classifier makes in order to
predict outputs. For example, SVMs assume that different classes
can be separated by wide margins, and therefore maximizing the
width of this margin when calculating the decision boundary will
reduce misclassifications on new data. Similarly, different kernels
of SVMs make different assumptions on the separation of the in-
put vectors for each class (e.g., separable by a linear hyperplane,
by a polynomial curve, etc) [66]. The set of all valid functions de-

Different algorithms make differ-
ent assumptions about the data...

scribing the relationships between X and Y given these biases is
called the hypothesis space. During the training process, the classifier
produces predicted labels for the training set examples. In order to

12 machine learning for security in hostile environments

assess which candidate is best, these predictions are compared to
the ground truth labels using a loss function, which measures the
quantity and/or severity of mistakes the classifier has made. Exam-
ples of loss functions are hinge loss for support vector machines and
cross-entropy loss for logistic regression and neural networks.

...minimizing error with differ-
ent loss functions and different
internal and external variables.

During training, the classifier learns a set of internal variables to
fit the function g approximating g∗—these are the parameters of the
model. Additionally there are external variables that affect which
candidate function is chosen, which are the hyperparameters. Exam-
ples of hyperparameters are the values of regularization terms in
support vector networks, the learning rate and batch size in neural
networks, and the quantity and configuration of weak learners in
ensemble methods. Different hyperparameters and decision thresh-
olds are evaluated using performance metrics evaluated on the
validation set.

Evaluation To evaluate each candidate on the validation set, and
the eventual chosen candidate function g on the test set, a final
assessment is performed using some performance metrics. While
the loss function can be used, as in training, it is customary to use
normalized performance metrics that are easier to interpret and
describe specific strengths and weaknesses of the model.

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.1

No p
red

ict
ive

 po
we

r

Figure 2.4: Example ROC
curve showing AUC at FPR
of 0.1. The diagonal acts as a
visual reference for AUC = 0.5,
which is equivalent to random
guessing.

Core to these metrics are the breakdown of correct vs. incorrect
predictions. For clarity, here we formulate them with respect to the
binary classification class (‖Y‖ = 2), but they can extrapolated to
multiclass problems. In binary classification, one class is considered
the positive class, while the other is considered the negative class.
Therefore, the classifier’s predictions can be either correct—true
positives (TP) and true negatives (TN)—or incorrect—false positives
(FP) and false negatives (FN). From these building blocks we can
derive the true positive rate (TPR), the proportion of examples from
the positive class which were correctly identified, and the false
positive rate (FPR), the proportion of examples from the negative
class which were incorrectly identified.

ROC curves can be used to com-
pare the TPR and FPR between
classifiers.

There is an inherent trade-off between these two metrics that can
be controlled by tuning the decision score threshold for the positive
class. To visualize this tradeoff, a receiver operating characteris-
tic (ROC) curve can be used, as depicted in Figure 2.4. The ROC
curve plots TPR over FPR and allows different models to be com-
pared: intuitively a classifier with greater area under the ROC curve
(AUC) will have greater performance across more thresholds. While
useful, AUC can obscure the true performance when there is a large
skew in the class distribution [75].

As an alternative, Precision and Recall can be used:

Precision =
TP

TP + FP
, (2.1)

Recall =
TP

TP + FN
, (2.2)

where Precision denotes the proportion of positive predictions

machine learning and security 13

(a) Positive (red) and
negative (blue) examples

(b) Predictions with low
Precision, low Recall

(c) Predictions with low
Precision, high Recall

(d) Predictions with high
Precision, low Recall

(e) Predictions with high
Precision, high Recall

Figure 2.5: Illustration of Preci-
sion and Recall. Colors denote
ground truth for positive (red)
and negative (blue) examples,
with the positive predicted set
shown by the dotted circle,
partitioned into TPs and FPs.

which were correct, while Recall captures the proportion of positive
examples that were correctly detected. Intuitively, Recall captures
how likely it is that no positive examples have been missed, while
Precision captures how reliable the positive predictions themselves
are. Figure 2.5 illustrates a series of different outcomes and how
Precision and Recall can be used to interpret them. In each subfig-
ure, the color depicts the ground truth label of the class, red for the
positive class and blue for the negative class. The dotted line encir-
cles the set of examples predicted as the positive class. Graphically
we can see clearly how Precision and Recall capture the amount
of True Positives (how many examples were detected), False Pos-
itives (how many false alarms were raised), and False Negatives
(how many examples evaded detection) which are key metrics for
evaluating a security detection system.

Alternatively, Precision, Recall,
and F1-Score can be used...

As with TPR and FPR, there is often a tradeoff between Precision
and Recall, so the F1-Score is used to find a balance. The F1-Score is
the harmonic mean of the two scores:

F1-Score = 2 · Precision · Recall
Precision + Recall

. (2.3)

Security Perspective Particular care must be taken in the design
and evaluation of classifiers for security tasks. Domains in which an
adversary has some control over the data distribution are especially
common in security. In these settings the i.i.d. assumption will be
violated so a defender should take this into account during the
evaluation, either by directly assessing robustness of the model
using adversarial examples or by simulating the distribution shift
that could emerge from adversarial interactions. Similarly, the class ...but either way, factors such as

the base rate must always be taken
into account.

distribution must be taken into account as the positive class often
has very low prevalence (e.g., attacks compromise an extremely
small amount of network traffic [23]). Applying incorrect metrics or
misinterpreting their values (as in the base rate fallacy [23]) can lead
to erroneous conclusions about the effectiveness and robustness of a
classifier (see Section 5.10).

2.1.3 Before Training: Data Collection

A dataset will usually consist of raw objects, e.g., images [51], au-
dio [49], programs [231], that are sampled from a problem space Z .

14 machine learning for security in hostile environments

In order to derive X , the raw data must first be transformed to
a numerical representation [39]. This means the objects in Z must
be transformed into a suitable format for ML processing. We can
define a feature mapping as a function ϕ : Z −→ X ⊆ Rn that, given
a problem-space object z ∈ Z , generates an n-dimensional feature
vector x ∈ X , such that ϕ(z) = x. Raw input data, such as apps,

must first be mapped to a numeri-
cal vector space...

Each value in the feature vector x describes some attribute of
the datapoint it represents. What attributes are included or not are
decided during the feature engineering process. A classic example
would in the classification of iris flowers [99]. A set of features such
as the sepal and petal lengths are designed, and then measurements
for each are taken for each example in the dataset. The procedure
is no different for a security task like malware classification. If the
presence of certain APIs, registry keys, certificates, or network ad-
dresses are deemed significant for determining malicious behavior,
they can be used as features. Then a program can be written to
automatically extract these features from the set malware examples.

The vector space containing all possible feature vectors is a fea-
ture space. Typically there is some discrepancy between a feature
space and the corresponding space of original raw inputs (i. e.,
the problem space). A simple case is in image recognition tasks, for
which the pixels of images are usually represented as real numbers
in the continuous range [0, 1]. However, to revert these feature vec- ...but representing malicious

behavior as a high fidelity feature
vector is still an open problem....

tors back to actual images, they must be discretized and mapped
to integers in [0, 255]. In practice, this rarely causes issues as the
feature space is high fidelity—the feature space and problem space
representations are very similar. On the other hand, many secu-
rity problems suffer from lossy representations; it is still an open
problem of how to capture, say, the behavior of an executable, as
a feature vector. This difficulty in bridging the feature and prob-
lem space representations is an example of a semantic gap [263]
and is common to other areas of computer security (e.g., unifying
low-level instructions and high-level behaviors in program analy-
sis [282]).

A unique approach often used in deep learning is representation
learning, in which features are not explicitly engineered and are
instead learned implicitly by the model to produce a latent feature
spaces. This approach has produced extremely compelling results
in computer vision and natural language processing, but its appli-
cation to security task such as malware are still exploratory [e.g.,
232]. While these feature spaces don’t require manual engineering
and can capture complex relationships between attributes, they may
overfit to artifacts and are typically difficult to explain. It is com-
mon to consider this implicit feature learning as part of the feature
mapping ϕ.

Security Perspective While we can intuitively recognize that there
exists some Platonic ideal [229] of malicious behavior (i. e., ‘we
know it when we see it’), it is difficult to capture this notion in a

machine learning and security 15

feature space representation. As such, feature engineering plays an
important role in the robustness of a model as the semantic gap is
often exploited by adversaries who evade detection by intentionally
using behaviors that aren’t captured by the feature space. A deeper
discussion of feature mapping, semantics, and their impact on
generating realizable adversarial examples is given in Section 4.3.

...which attackers can abuse to
evade detection.

2.1.4 After Training: Deployment and Operation

Once deployed, models require
maintenance to avoid performance
decay...

Once the best performing model has been evaluated and chosen,
it will be deployed in the wild where the model will produce pre-
dictions for previously unseen test inputs. The performance of the
model should be tracked over time as gradual changes in the data
distribution will cause the performance to decay. Numerous meth-
ods exist to help a model adapt to such changes, including incre-
mental learning [13], online learning [69, 203], active learning [250],
and classification with rejection [139, 27, 30]. Each approach has
its own cost, which may or may not be worth the performance im-
provement depending on the severity of the drift. Given significant
performance decay, it may be necessary to completely retrain the
model on more recent data, or to revisit the feature engineering and
classifier design completely.

...as their presence alone will
cause attacker behavior to change,
resulting in drift.

Security Perspective As mentioned previously, while the reasons
for dataset shift vary depending on the domain and are not unique
to security (e.g., aging faces in facial recognition [200]), they are
often exacerbated by adversarial behavior. Importantly, security
tasks are susceptible to a kind of observer effect. Classifier designers
observe the behavior of adversaries in order to design and train the
classifier, but once deployed, adversaries will alter their behavior in
order to avoid detection (sometimes suddenly and drastically). This
feedback loop between defenders and adversaries is often described
as a cat and mouse game or the cybersecurity arms race. An additional
threat during deployment comes from data poisoning. This attack
becomes possible when a model is updated using adversary con-
trolled data, as can occur with many of the previously mentioned
adaptation strategies. By poisoning the data, attackers can reduce
the effectiveness of the model [36], or even inject backdoors which
cause the model to produce specific outputs when triggered with
specially crafted inputs [121, 252].

2.2 Core Concepts in the Security of Machine Learning

The most common attacks against machine learning algorithms
can be categorized as either test-time attacks (e.g., evasion), train-
ing time attacks (e.g., poisoning and backdoors), or privacy attacks
(e.g., model stealing and membership inference). In this thesis we

16 machine learning for security in hostile environments

focus primarily on test-time evasion attacks, however, it is useful to
contextualize these among the broader threat landscape, as many
concepts discussed may be extrapolated to other settings. For ex-
ample, Chapter 4 explores how to generate realizable adversarial
inputs in the problem-space for targeting malware detectors, i. e.,
functioning malware that maps to an adversarial feature vector. We
approach this problem from the perspective of evasion attacks, but
generating such problem-space apps is also a necessary step for
poisoning or trojaning malware detectors.

Machine learning algorithms have
their own set of vulnerabilities...

2.2.1 Adversarial Examples

In information security the moniker adversarial examples may seem
redundant, as adversarial inputs are ubiquitous. For as long as
there have been defenses, there have been attempts to evade them,
and as we have discussed, in detection tasks the data of interest is
inherently adversarial (e.g., malicious apps or attack traffic).

Figure 2.6: Illustration of ad-
versarial examples (B) for a
linear binary classifier and
given L∞ constraint repre-
sented by the colored squares.

Nevertheless, the term originates from the machine learning
field [279] to more specifically describe points which are intention-
ally crafted by an attacker and which are misclassified by learn-
ing algorithms in a counterintuitive way. What is counterintuitive
about them is that the examples can be extremely similar to non-
adversarial inputs. For example, an image of a cat may be misclas-
sified as a dog, despite looking visually identical (to the human eye
at least) to another image of a cat that is correctly classified. To ex-
tend the analogy to a security task, two apps may exhibit the exact
same malicious behavior, but one will be classified correctly and the
other will evade detection.

Figure 2.6 illustrates how this phenomenon can arise for toy data
and a linear classifier. The squares around each example demarcate
some L∞ norm distance, within which the set of examples are simi-
lar and share a ground truth label. For example, for a set of images
in the image recognition task, the L∞ norm may be small enough
that any differences between examples of the set are visually imper-
ceptible. As is clear from the illustration, there will be examples in
these sets which are also in the error set, i. e., examples which fall on
the other side of the decision boundary and are misclassified. Two
such examples are marked by the stars (B).

2.2.2 Test-Time Attacks

...such as the presence of adver-
sarial examples that can evade
detection while retaining mali-
cious functionality.

Adversarial examples can be crafted to perform test-time evasion
attacks, the archetypal attack against machine learning classifiers in
which an input is perturbed in order to fool the target model [279,
85, 34, 226]. Evasion attacks can be targeted—or class-dependent—if
they aim to flip the prediction to a specific class, or untargeted if
they aim to cause a misclassification regardless of the final class
(these are equivalent in binary classification) [52].

machine learning and security 17

Figure 2.7 depicts a gradient-driven evasion attack in which an
example from class # is perturbed to cross the decision boundary
where it will be misclassified. The dotted circle represents a con-
straint on the L2 norm used to ensure the perturbed example is still
a plausible member of class #. The contours show the values of a
loss function quantifying the fitness of the example to class from
dark red (high loss) to dark blue (low loss).

Figure 2.7: Evasion attack
showing the path taken to find
an adversarial variant (B) of an
example from class # given an
L2 constraint (dotted circle).

The dotted arrow shows small steps taken iteratively in the di-
rection of the negative gradient of the loss with respect to the ex-
ample which can be followed to find a perturbation with which
the example will be misclassified as class with high confidence.
Algorithms that use gradient-driven optimizations of this sort in-
clude the fast gradient sign method (FGSM) [112], Carlini–Wagner
(CW) [51], the basic iterative method (BIM) [160], and projected
gradient descent (PGD) [181].

When a perturbation is generated to make a single input evasive,
it is termed an input-specific perturbation. The alternative is to gen-
erate a universal adversarial perturbation (UAP) which can applied
to multiple inputs to make all of them evasive [198, 304]. UAPs
significantly reduce the effort for an attacker to create adversarial
examples, enabling practical and realistic attacks across different
applications, and are useful for revealing systemic vulnerabilities in
the model [64, 304].

2.2.3 Training-Time Attacks

Attackers can poison the training
process to degrade performance...

Attacks can also be performed at training time. In these threat
models, the attacker is assumed to have partial control over some
combination of: the training data, the labeling of some training
data, the parameters of the model. An example in security would
be where an antivirus company retrains their model using recent
malware submissions; clearly the attacker partially controls this
data [251]. In some extreme threat models, the attacker controls the
entire training process and distribution of a model (part of the model
supply chain [121]. This is particularly relevant where extremely
large vision or language models are pretrained by the few entities
with the data and resources to do so (corporations such as Google
and OpenAI) and released to practitioners to fine-tune on their own
tasks. It is possible that these models have been generated such that
their outputs are not wholly trustworthy.

The foundational training time attack is poisoning. In poisoning,
a small fraction of training data is perturbed or mislabeled in order
to maximize model error at test time [36]. The term ‘poisoning
attack’ usually refers to an attack against the availability of a model,
i. e., where the only goal is to maximize model error as a denial of
service. However the mechanism of poisoning training data also
facilitates more insidious attacks such as the backdoor, or trojan,
attack [e.g., 121, 244, 252].

18 machine learning for security in hostile environments

In backdoor attacks, training data is poisoned in a very targeted
way, by applying a specific pattern of features, called the trigger, to
the poisoned examples. At test time, only inputs with the trigger
will be misclassified while other clean inputs are unaffected. Usu-
ally the data is poisoned in such a way that a backdoor is inserted
from one class (or many classes) to another, for example in malware
detection it would not be advantageous to insert a backdoor from
the benign to the malicious class, only from the malicious to the
benign class.

...or even insert backdoors to
activate at test time.

Figure 2.8 illustrates a type of backdoor attack called a clean-label
attack in which the attacker can poison the data but not control the
labeling [252]. This means they must ensure the poisoned data re-
mains a plausible member of the ground truth set. In the example,
the dotted line depicts the decision boundary before poisoning,
the solid line the decision boundary after poisoning, and the two
center top examples with tails represent triggered examples. The
triggered example of class is the poisoned example. Including
it forces the model to fit to it and alters the decision boundary—
introducing the backdoor. Now new test-time examples, such as the
triggered example of class #, can be presented to the model and
will be misclassified.

Figure 2.8: Clean-label at-
tack introducing a backdoor
shown by the change in deci-
sion boundary (from dotted
to unbroken line). Tails indi-
cate the triggered examples: a
training example () used to
introduce the backdoor and a
test example (#) which is now
misclassified.

It is important to note that backdoor attacks can also be per-
formed without data poisoning, usually by directly altering the
parameters of a trained model or the code used to generate it [243].
Such attacks have a smaller footprint but require greater control
over the model and are often associated with insider threats.

2.2.4 Privacy Attacks

In privacy attacks the attacker tries to extract information about
the training data used to train the model or the parameters of the
model itself. These attacks are particularly relevant to cloud-based
Machine-Learning-as-a-Service (MLaaS) providers where the at-
tacker only has black-box access and where the models may be
trained with private user data or themselves represent valuable
intellectual property.

Attacks can force the model to
leak private information about the
training data...

In membership inference attacks the goal is to determine whether
a given example was a member of the training set or not. This can
itself be formulated as a classification problem, in which the at-
tacker generates shadow models trained with different training sets
(where the membership of each example is known) and then uses
these models to train a metaclassifier to distinguish between out-
puts of models that do or do not contain a particular example [258].

Similarly in model inversion attacks, the attacker is able to infer
information about the training data from the model outputs [103,
102]. Unlike in membership inference, model inversion attacks can-
not say whether an individual example was present in the training
set, but instead can extract an average representation of the training

machine learning and security 19

inputs for a particular class. For example, in biometric applica-
tions such as facial recognition where each class is an individual,
the attacker can reconstruct the average features of a specific per-
son [102].

The extraction of training data usually exploits a tendency of
models to memorize training examples (a form of overfitting). A
clear illustration of this is in attacks against large generative lan-
guage models, in which the model can be stimulated to output
long sequences of private training data such as addresses, phone
numbers, and social security numbers [53]. ...or even steal the parameters of

the model itself.In more of an attack on model secrecy rather than privacy, model
stealing attacks try to extract the parameters of the model itself.
A typical strategy is to query the target model to produce a set
of input–output pairs, and then solve for the parameters in order
to replicate the behavior of the target model [290]. Models recon-
structed in this way can also act as a surrogate model for test- and
training-time attacks or act as an intermediate step towards recover-
ing information about the training data.

Transferability allows approxima-
tions of white-box attacks to be
applied in black-box settings.

2.2.5 Transferability

Transferability is the property by which attacks against one ma-
chine learning model can succeed against another model trained for
the same task, even if they have different architectures, use different
learning algorithms, or were trained on different datasets [78, 214].
Transferability has wide-ranging implications for machine learning
security, because it allows attackers to craft strong generalizable
attacks while having limited knowledge of the target model. For
example, an attacker can use their own set of surrogate data (ideally
sampled from the same distribution as the target model’s training
set) to train a local surrogate model. They could then use white-box,
gradient-driven methods to generate examples which evade the
surrogate model, but which would transfer to, and evade, the target
model. They may also be able to reuse examples to evade multiple
different models, reducing the cost it takes to generate them.

2.3 Core Concepts in Machine Learning for Security

In this section we outline some core concepts used in the evaluation
of security detectors based on machine learning. Threat models
are vitally important for defining the scope of an attack or defense.
Closely tied to the threat model are notions of cost, robustness, and
adaptive worst-case attackers, all of which have implications for the
evaluation of defenses.

20 machine learning for security in hostile environments

2.3.1 Threat Models

Threat models are a vital component of all discussions on secu-
rity as they define the scope of an attack or defense. Claims about
applicability, strength, and cost of attacks, and about the effec-
tiveness, robustness, and generalizability of defenses, must all be
interpreted with respect to a given threat model; that is, without a
threat model, such claims are not falsifiable. Threat models describe...

While there are many ways to formulate a threat model, here
we give an overview of the threat model formalization proposed
in Biggio and Roli [34] which is used throughout this thesis. This
formulation frames the threat model in terms of attacker knowledge
(what they know about the model and its defenses) and attacker
capability (their ability to act on this knowledge).

Attacker Knowledge We represent the knowledge as a set θ ∈ Θ
which may contain (i) training data D, (ii) the feature space X , (iii)
the learning algorithm g, along with the loss function L minimized
during training, (iv) the model parameters/hyperparameters w. A
parameter is marked with a hat symbol if the attacker knowledge
of it is limited or only an estimate (i.e., D̂, X̂ , ĝ, ŵ). There are three
major scenarios [34]:

• Perfect Knowledge (PK) white-box attacks, in which the attacker
knows all parameters and θPK = (D,X , g, w). ...what an attacker knows about

the model...
• Limited Knowledge (LK) gray-box attacks, in which the attacker has

some knowledge on the target system. Two common settings are
LK with Surrogate Data (LK-SD), where θLK−SD = (D̂,X , g, ŵ),
and LK with Surrogate Learners, where θLK−SL = (D̂,X , ĝ, ŵ).
Knowledge of the feature space and the ability to collect surro-
gate data, θ ⊇ (D̂,X), enables the attacker to perform mimicry
attacks in which the attacker manipulates examples to resemble
the high density region of the target class [37, 100].

• Zero Knowledge (ZK) black-box attacks, where the attacker has no
information on the target system, but has some information on
which kind of feature extraction is performed (e.g., only static
analysis in programs, or structural features in PDFs). In this case,
θZK = (D̂, X̂ , ĝ, ŵ).

Note that θPK and θLK imply knowledge of any defenses used to
secure the target system against adversarial examples, depending
on the degree to which each element is known [50].

Attacker Capability The capability of an attacker is expressed
in terms of their ability to modify values in the feature space X ,
as well as the corresponding problem space Z which determines
their ability to generate effective real-world attacks. Formally, we
can define attacker capability as a set of feature-space constraints Ω

machine learning and security 21

and problem-space constraints Γ, which we elaborate on further
in Section 4.3. ...and their capability to act on

that knowledge.Note that the attacker’s knowledge and capability can also be
expressed according to the FAIL [277] model as follows: knowledge
of Features X (F), the learning Algorithm g (A), Instances in training
D (I), Leverage on feature space and problem space with Ω and
Γ (L). More details on threat models formulations can be found
in [34, 277].

2.3.2 Attacker Cost vs. Capability

Defending against adversarial examples is an extremely difficult
task, and it may be that a technical solution that mitigates their
effect completely is not possible without a significant paradigm
shift. Essentially, when models misclassify adversarial examples,
they are doing what they are supposed to do—exploiting highly
predictive features in the dataset to discriminate between classes.
The real issue is that this behavior does not match up with our
intuitions, nor with how humans behave given the same task [132]. ‘Raising the bar’ involves increas-

ing the attacker’s cost for invoking
a given capability...

An intermediate step towards complete mitigation is to raise the
bar for the attacker, to provide defenses which force the attacker to
expend much greater cost in order to exercise the same capability
as before. Increasing attacker cost reduces harm as attackers are not
able to iterate on their attacks as quickly, must choose fewer targets,
and may be forced to produce weaker or more complex attacks
which are then easier to detect themselves.

2.3.3 Robustness

...and ‘robustness’ quantifies the
height of the bar, assessing how
resilient a model is under attack.

Closely tied to the threat model is robustness, which is usually de-
fined with respect to some bounded adversarial capability. For
example, in the computer vision domain, an attacker can perturb
the pixels of an image in order to produce an adversarial example
that is misclassified. We can quantify the size of the perturbation
the attacker adds to the image using a distance such as the L2 or L∞

norms. Typically, smaller perturbations will be less noticeable as the
image still closely resembles the original, while larger perturbations
will produce more evasive examples. At the extreme, the attacker
can completely transform the image to look like an image from
another class, but at this point the image has lost all semantic rel-
evance to its original class. As such, it usually doesn’t make sense
to consider an unconstrained attacker and instead we set some
reasonable bound on the size of the perturbation. Given such a con-
straint, we can define robustness as the worst-case performance of
the model given this adversary capability.

Classifier A
Classifier B

Attacker Capability

A
tt

ac
k

Su
cc

es
s

R
at

e

Figure 2.9: Security evaluation
curve comparing robustness
between two classifiers.

Figure 2.9 depicts a security evaluation curve which can be used
to visualize this relationship. The curve shows the success rate of
an attack as a function of the attacker’s capability (e.g., the pertur-

22 machine learning for security in hostile environments

bation budget in the computer vision example). The robustness of
different models can be compared by these curves, for example the
figure suggests that overall Classifier B is more robust than Classi-
fier A against medium-strength attacks.

In this thesis we will also use robustness to refer to robustness
against concept drift in relative terms. We say model a is more
robust than model b if model a has greater detection performance
given the same severity of drift, or that model a is more robust than
model b if model a has the same detection performance given more
severe drift.

2.3.4 Security by Obscurity and Adaptive Attackers

Defenses should not rely on secu-
rity by obscurity...

Security by obscurity is a defense mechanism in which parts of the
design or implementation of a system are kept secret in order to
prevent them from being exploited. While it may have value as part
of defense-in-depth, it cannot be relied upon as attackers can often
find ways to infer or leak the information being hidden. In contrast,
Kerckhoff’s principle is a cryptographic design principle which holds
that a system should be secure even if the attacker knows every-
thing about the system—except the secret key [147]. This notion
can also be applied to the evaluation of machine learning-based
systems.

A classic example in machine learning security is the use of gra-
dient masking, a category of defenses in which a model does not
produce useful gradients [e.g., 280, 120, 215]. As gradients are often
used to guide optimization-based algorithms for crafting adversar-
ial examples [e.g., 112], it was suggested that these models would
be more robust. However, an attacker aware of this defense would
be motivated to recover usable gradients, which is possible via
black-box stimulation of the model [216] or by using an approxima-
tion of the model which is differentiable [22].

...and should be evaluated assum-
ing worst-case attackers.

An attacker who has perfect knowledge of the system, its de-
fenses, and attempts to exploit them, is an adaptive attacker [52] and
must be considered in threat models for evaluating defenses.

2.4 Summary

The reader should now be comfortable with the machine learning
classification task and how classifiers can be applied to binary secu-
rity detection tasks (e.g., classifying malware vs. goodware or attack
vs. benign traffic). They should be familiar with the presence of
adversarial examples and different types of attacks against machine
learning algorithms; typical metrics for quantifying the success of a
classifier such as AUC, Precision, Recall, F1-Score, and robustness;
and threat models used to define the scope of attacks or defenses
with respect to attacker knowledge and capability.

Rogues are very keen in their profession,
and know already much more than we
can teach them.

Alfred Charles Hobbs

Part II:

Adversarial Interactions

23

3 Characterizing Concept Drift in Security

3.1 Key Insights

3.2 Overview

3.3 Unifying Drifting and Adver-
sarial Examples

3.4 Related Work

3.5 Summary

To provide a characterization of the hostile environment, this
part discusses two aspects of adversarial interactions with security
detectors: concept drift and realizable adversarial examples. We
first give an overview of concept drift, outlining the different forms
that concept drift takes and how they manifest in security data. In
particular we illustrate that concept drift and adversarial inputs are
inextricably related in security detection tasks and motivate why
they should be studied in tandem.

Concept drift is a central motif throughout this thesis as it is through
concept drift that we indirectly observe the effects of the hostile en-
vironment. Chapter 4 will discuss the constituent parts of concept
drift in security: realizable adversarial examples; Chapter 5 will
discuss ways of performing evaluations in a drifting setting and
measuring the performance decay induced by concept drift; and
Chapter 6 will propose a methodology for identifying and quaran-
tining drifting examples.

3.1 Key Insights

For reference, this chapter provides the following contributions:

• We first provide an overview of the different types of concept
drift and frame them in the context of security detection tasks.
We posit that concept drift in security should be treated prac-
tically as an artificial process and largely exists as an emer-
gent phenomenon arising from the presence of adversarial in-
puts (Section 3.2).

• We then propose a unifying theoretical framework to describe
covariate shift, concept drift, and the space of adversarial ex-
amples, by modeling them as submanifolds and morphisms of
the lower dimensional class manifold. This framework supports
the hypothesis that the three phenomena are different aspects of
the same underlying issue, motivating robustness research that
jointly tackles all three (Section 3.3).

26 machine learning for security in hostile environments

3.2 Overview

Concept drift describes changes in
the data distribution over time...

One of the greatest challenges facing machine learning-based secu-
rity detectors is the presence of dataset shift [144, 194, 6, 139, 13] as
the distribution of the malicious class at test time (i. e., at deploy-
ment) begins to diverge from the training distribution. This vio-
lates one of the core assumptions of most classification algorithms:
that the training and test time examples are identically and inde-
pendently drawn from the same joint distribution (i.i.d.). As this
assumption weakens over time, the classifier’s predictions become
less and less reliable and performance degrades.

Dataset shift can be broadly categorized into three types of
shift [199]. Covariate shift refers to a change in the distribution of
P(x ∈ X), when the frequency of certain features rises or falls
(e.g., variations in API call frequencies or traffic statistics over time).
Prior probability shift or label shift is a change in the distribution of
P(y ∈ Y), when the base rate of a particular class is altered (e.g., an
increase in attacks or malware prevalence over time). Concept drift
is a change in the distribution P(y ∈ Y|x ∈ X). This often occurs
when the definition of the ground truth changes, for example, if a
new family of malware arises which, given the feature space rep-
resentation X , is indistinguishable from benign applications. Due
to the model’s limited knowledge, the model will start misclassi-
fying examples from the new family, even if no covariate or prior
probability shift has occurred.

With some notable exceptions [e.g., 144, 193], it is common for
concept drift to be treated as a ‘natural’ evolution in the class dis-
tributions over time [187, 316, 325, 141] in which concept drift is
treated as unrelated to adversarial behavior. This is certainly the
case for domains outside of security, e.g., in the problem of aging
faces for facial recognition [201].

However, we posit that this perspective is fallacious in the secu-
rity domain.

...which in security contexts
largely exists in the malicious
class and is driven by adversarial
behavior.

While there are natural sources of gradual drift in security such
as changes in market trends, user preferences, or new developer
APIs affecting malware classification [325], it is intuitive that drift
in security data is largely driven artificially by drift in the malicious
class as a result of the hostile environment [144]. For example, the
impetus for concept drift in malware classification is that malware
authors are driven by the profit motive to try and evade detection
or classification by app store owners, antivirus companies, and
users. This incentivizes them to innovate: to obfuscate features of
their malware, develop new methods for exploitation and persis-
tence, and explore new avenues of profiteering and abuse. This
causes the definition of malware to evolve over time, sometimes
in drastic or unexpected ways [283]. The same is true in modern
network traffic environments where attacks are polymorphic and
continuously evolving in order to adapt to defenses [100]. Fig-

characterizing concept drift in security 27

ure 3.1 illustrates this as a function of performance over time. At
a fine-granular level, adversarial attacks cause immediate drops in
classification performance which, over time, accumulate in a steady
downward trend as adversaries continue to adapt. This cumulative
effect is what we perceive as concept drift.

Time

Pe
rf

or
m

an
ce

Figure 3.1: Illustration of cu-
mulative performance decay
induced by concept drift re-
sulting from ongoing adversar-
ial interactions.

This intuition is supported empirically. In Chapter 5 we plot
the performance over time for three Android malware classi-
fiers [19, 187, 118] with respect to both the benign and malicious
class and observe performance decay which is negligible in the
benign class but significant in the malicious class. In Chapter 6

we perform similar experiments to identify drifting examples for
malware detectors from the Android [19], Windows PE [11], and
PDF [271] domains and report similar trends.

In this chapter, we take a different approach. Inspired by past
work on the geometry of adversarial examples [e.g., 150, 110], we
propose a theoretical framework that provides a unifying perspec-
tive on the phenomena of adversarial examples, covariate shift,
and concept drift. This provides further support to our hypothesis
that in security, these notions are describing different aspects of the
same underlying issue—adversarial interactions with the model.
This motivates research that considers the issues jointly, as defenses
against one will inform the design of defenses against the others.

Later in this thesis we provide
some empirical evidence to sup-
port this idea...

Note that in practice, it can be extremely difficult to determine
how much error should be attributed to each type of shift [199].
Given this, it is common in the security community to collec-
tively refer to all types of shift as concept drift. Throughout this
thesis we will continue this custom—with the exception of the
remainder of this chapter in which we specifically deal with
covariate shift and concept drift as separate phenomena.

3.3 Unifying Drifting and Adversarial Examples

...while this chapter offers some
theoretical reasoning to better un-
derstand the relationship between
adversarial examples and drift.

In this section we propose a unifying framework for describing
covariate shift, concept drift, and adversarial examples which sug-
gests that they are simply different manifestations of the same
adversarial behavior. This further implies that reasoning about one
may inform defenses against the others, motivating research which
jointly considers all three phenomena.

3.3.1 Modeling Drift Using Manifolds

The manifold hypothesis states that real-world natural data embed-
ded in a high-dimensional space is actually concentrated around a
manifold of much lower dimensionality [94, 32] and has been cited
as the reason for machine learning problems being tractable [150].

28 machine learning for security in hostile environments

While attempts have been made to prove the hypothesis under
certain strict conditions [e.g., 94], it is difficult to show it to be uni-
versally true for complex data. However, practically it remains a
useful heuristic and has been highly influential as a prior exploited
by representation learning methods, for example in principal com-
ponents analysis (PCA) [130, 220], sparse coding algorithms [207,
322], and the development of autoencoders [237, 299, 129].

We begin by modeling the classes
as manifolds and submanifolds...

In this chapter, we will assume that the manifold hypothesis is
accurate for describing security data and use it to unify the notions
of adversarial examples and concept drift in a hostile environment,
which will provide some intuition to support how these issues can
be jointly mitigated.

Figure 3.2: Illustration of the
manifold hypothesis showing
data embedded in a 3D space
projected to corresponding
points concentrated on or near
a 2D manifold.

Definition 1 (Class Manifold) We assume data from each class is
sampled from a k dimensional manifold denoted asMj ⊂ Rd for each
class j ∈ Y .

We assume that the manifold defines the class sufficiently such
that they can be interpreted as the fundamental ground truth of
each class.

Definition 2 (Perceived Manifold) At any point in time t we perceive
a submanifold P t

j ⊆Mt
j of the class manifold for each class j ∈ Y .

The perceived manifold arises from the fact that, in practice, we
are only exposed to a subpopulation of the class distribution. For
example, consider a malware detector Det deployed over a week-
long period. At any point in time the malware encountered will
only be a subset of the total population of malware—these points
are sampled from the perceived manifold.

Definition 3 (Concept Drift) As concept drift is a change in the class
definition itself, which we assume is geometrically represented by the class
manifold, we can define concept drift as a morphism ϕd:

ϕd :Mt
j −→Mt∗

j . (3.1)

Following from the previous example, during the week period,
malware authors may discover that a set of behavior that was pre-
viously considered benign can be exploited for malicious function-
ality. As they adopt this technique, Det will produce errors as the
definition of what malware is expands to include apps that were
previously considered as goodware.

...and define covariate shift and
concept drift as morphisms of the
manifolds over time...

Definition 4 (Covariate Shift) We can define covariate shift as a
morphism ϕc of the perceived manifold within the class manifold, where
Mt

j ⊆Mt∗
j , depending on the presence of concept drift:

ϕc : P t
j ⊆Mt

j −→ P t∗
j ⊆Mt∗

j . (3.2)

This definition is intuitive following the definition and example
for the perceived manifold. For Det, as it encounters new data from

characterizing concept drift in security 29

(a) Class and malicious
perceived manifolds

(b) Concept drift affecting the
malicious class manifold

(c) Adversarial perturbation
inducing a misclassification

(d) Covariate shift affecting
malicious perceived manifold

Figure 3.3: Illustration of drift
phenomena showing class
manifoldsM0 (blue) andM1

(red), and perceived manifold
P1 (red circle). Darker areas
depict the error set for each
manifold. Dotted lines show
manifold before drift occurred.
White circle and star show ad-
versarial point before and after
perturbation, respectively.

one time interval to the next, it is likely that the feature distribution
will change as adversarial activity fluctuates. This activity manifests
as covariate shift. Note that covariate shift and concept drift can
occur simultaneously where both the perceived manifold and the
class manifold change over time.

Definition 5 (Adversarial Example) We define an error set E(Mt
j) as

the set of inputs sampled from the class manifoldMt
j that are misclassified

by the model. In this context we can define an adversarial example derived
from x ∈ P t

j as a point x′ ∈ Mt
j such that x′ ∈ E(Mt

j).

...while adversarial examples
exist as members of an error
set concentrated near the class
manifold.

While practically the adversary will seek to find the smallest
distance between x and x′ to fulfill constraints on plausibility and
inconspicuousness (e.g., the point in the error set closest to x), here
we loosen the definition to include any point that can be inten-
tionally crafted by an attacker to induce error in the model. Note
that adversarial attacks are by definition dependent on the deci-
sion boundary of the model, which is not true for the other two
phenomena.

3.3.2 Implications for Security Detection

This modeling reveals some re-
lationships between the phenom-
ena:...

Having provided a geometric formulation for concept drift, covari-
ate shift, and adversarial examples, some relationships between
the three phenomena become apparent which can help us gain a
deeper intuition on their nature. Here we discuss some of the impli-
cations, framed for a security detection task with a fixed model (i. e.,
not retrained over time) where Y = { 0, 1 }, denoting the benign
and malicious class, respectively. Three observations in particular
suggest that the three issues are simply different facets of the same
phenomena in such a setting:

...that concept dictates the size of
the adversarial space...

Concept drift and the adversarial space depend on one another.
The space of possible adversarial points in a binary security detec-
tion task at any point in time coincides with the error set E(Mt

1),
this is immediate by the definition. As concept drift transformsMt

1
it is highly likely that the volume of this error set, VolE(Mt

1), will
also change, potentially increasing or decreasing the adversarial
space—that is, concept drift dictates the adversarial space. This

30 machine learning for security in hostile environments

demonstrates a very intimate relationship between concept drift
and adversarial examples. We posit that this relationship exists due
to concept drift being artificially driven by adversarial behavior
(e.g., attackers searching for adversarial examples) and therefore in
practice concept drift likely increases the volume of the error set.

...that covariate shift and adver-
sarial examples share a potential
attack space...

Covariate shift and adversarial examples share an attack space.
Note that there exists a union of perceived manifolds that is a cover
ofMt

1 and thus also spans E(Mt
1). Intuitively we can see why this

should be the case by visualizing the perceived manifold ‘move’
across the class manifold over time as adversaries perturb the fea-
tures of inputs in order to craft adversarial examples. In an extreme
case in which adversaries discover all possible adversarial exam-
ples that lie on the class manifold (i. e., without inducing concept
drift), we would perceive this as a covariate shift mapping P t

1 to a
cover of E(Mt∗

1). This shows that the potential threat posed by both
phenomena is equivalent.

...and that a single defense can
jointly mitigate all three issues.

Robustness against all three phenomena can be improved jointly.
We can formulate robustness as an optimization problem that aims
to minimize the volume of the adversarial space across all classes:

min
θ

∑
j∈Y

VolE(Mt
j) , (3.3)

where θ represents the parameters of the model and any applied
defenses.

We can imagine a defense against adversarial examples and the
effects of covariate shift applied at time t which is able to success-
fully reduce this volume at time t∗ such that:

∑
j∈Y

VolE(Mt∗
j) = ∑

j∈Y
VolE(Mt

j)− De f (Mt
j) . (3.4)

However, concept drift can morph the class manifold, scaling the
volume of the error set by a factor of γj ∈ [0, ∞). Additionally,
if our defense only hardens a particular region of the space (e.g.,
L2 norm balls around points sampled from the manifold at time t),
then concept drift can render part of the defense ineffective. In this
case only the intersection of the previously defended region and the
new class manifold is useful:

∑
j∈Y

VolE(Mt∗
j) = ∑

j∈Y
VolE(ϕd(Mt

j)− De f (Mt
j) ∩ ϕd(Mt

j))) . (3.5)

In both cases, we are practically only able to control the impact of
the defensive function, in which case improving robustness against
all phenomena can be achieved by improving the space covered by
the defense De f —although to different degrees.

characterizing concept drift in security 31

3.3.3 Implications for Robust Feature Space Design

Manifold modeling tells us some-
thing about the ideal dimensional-
ity of robust feature spaces...

It is worth briefly taking a moment to discuss the design of robust
feature spaces in the context of these three phenomena. Concept
drift always occurs relative to a particular feature space—the fi-
delity of the feature representation affects the ability for adversaries
to exploit the semantic gap: the gap between the semantics captured
by the feature space and those present in the original objects [263].
For example, consider a statically extracted feature space in mal-
ware detection. If a new exploitable API is added to the target
platform which is not included in the feature space, malware au-
thors may include it in their apps without it being visible to the
model. Designing feature spaces which accurately capture all ma-
licious properties and behaviors has proven extremely challenging
and remains an open problem. However despite this, we intuitively
understand that there is some Platonic ideal [229] of malicious
behavior—i. e., we know it when we see it. Removing anything from
this ideal definition would make it no longer apply to malicious
examples, and adding anything more to it would be redundant.

...high codimension of the class
manifold within the higher level
feature space reduces robustness...

These notions can be interpreted more practically when viewed
from the perspective of manifolds. Khoury and Hadfield-Menell
[150] assert that a feature space of too high dimensionality (specif-
ically as the codimension d − k increases) becomes less robust as
there are an increasing number of directions off the class manifold
in which to craft adversarial perturbations. As concept drift is a
phenomenon driven by adversarial activity, this assertion can be
extended to concept drift and covariate shift as well.

...but too low dimensionality will
increase entanglement between
classes, causing classification
errors.

The question then is by how much can the codimension be re-
duced. The intrinsic dimensionality describes the minimal number
of dimensions needed to describe any member of the class mani-
fold, in contrast to an extrinsic, or ambient, dimensionality that it
can be embedded within [94]. A feature space with too low dimen-
sionality will mean that there are certain regions of space in which
the classes overlap and cannot be well-separated. When this occurs
there will be feature vectors for which it is not possible to deter-
mine which class it belongs too, so more features must be added.

3.4 Related Work

Geometry of Adversarial Examples Khoury and Hadfield-
Menell [150] propose a geometric framework to analyze the high-
dimensional geometry of adversarial examples. Their framework
reveals the effect of codimension on robustness, as well as how the
use of different norms affect robustness evaluations. Similar to our
work, they build upon the manifold hypothesis, however we extend
this modeling to concept drift and covariate shift as well. Gilmer
et al. [110] use geometric reasoning to illustrate a relationship be-
tween adversarial examples and images corrupted by additive

32 machine learning for security in hostile environments

Gaussian noise. They observe that training procedures to improve
robustness against adversarial examples can improve corruption ro-
bustness and that can training using Gaussian noise can moderately
improve robustness against adversarial examples. This work in-
spires us to reason about similar relationships between adversarial
examples and adversarial drift.

Characterizations of Drift Moreno-Torres et al. [199] provide an
excellent general taxonomy of dataset shift and we defer to their
terminology in this thesis. Gama et al. [108] describe types of con-
cept drift in the context of online learning, however they focus on
applications such as recommendation systems and do not consider
adversarial sources of drift. In contrast, Kantchelian et al. [144] po-
sition covariate shift as adversarially driven and outline practical
research directions to help design systems which can respond to
these changes. Sehwag et al. [248, 247] investigate adversarial i.i.d.
violations from a different perspective, studying adversarial exam-
ples derived from out-of-distribution inputs. They find that existing
out-of-distribution detectors and adversarial examples detectors are
insufficient to detect them and urge the inclusion of such attacks in
the design of future defenses.

3.5 Summary

In this chapter we have characterized the presence of concept drift
for security detection tasks. We have further illustrated an intrinsic
relationship between covariate shift, concept drift, and the space
of adversarial examples through a theoretical framework built on
the manifold hypothesis. These relationships suggests that the
three phenomena are three aspects of the same underlying issue,
motivating research that studies them jointly.

4 Realizable Adversarial Attacks in Security

4.1 Key Insights

4.2 Overview

4.3 Problem-Space Adversarial
ML Attacks

4.4 Attack on Android

4.5 Experimental Evaluation

4.6 Realizable Universal Adver-
sarial Perturbations

4.7 Discussion on Attacks and
Results

4.8 Related Work

4.9 Summary

A driving force of concept drift in security is the presence
of adversarial examples. To stay effective and maintain profitability,
attackers seek to discover adversarial examples which are misclas-
sified by the machine learning-based detector while still retaining
their malicious functionality. The more effective these examples are,
the more severe the resulting concept drift will be.

However, generating realizable adversarial attacks in security do-
mains by applying powerful, gradient-driven, state-of-the-art at-
tacks, such as those from the computer vision domain, is challeng-
ing. This is because the mapping from the raw discrete input space
(binary programs, source code, network traffic, etc.)̇ to the extracted
(or embedded) feature space is typically not invertible nor differen-
tiable. Because of this, when an attacker identifies the ideal pertur-
bations to cause a misclassification, it is usually not obvious how to
apply them to the original input—or whether such a transformation
is possible at all.

In this chapter we devise state-of-the-art approaches for automati-
cally generating functioning malware that evade machine learning-
based detection systems. We provide a formalization to unify vital
aspects of problem-space attacks with feature-space attacks and
identify key requirements for successful end-to-end attacks in typ-
ical security domains. Additionally, we demonstrate the utility
of our formalization by using it to identify weaknesses in prior
Android evasion attacks and propose a novel attack based on au-
tomated software transplantation. We show how such attacks can
evade a hardened variant of a state-of-the-art classifier, and be used
to facilitate scalable, low-cost universal adversarial perturbations.

4.1 Key Insights

For reference, this chapter provides the following contributions:

• We propose a novel formalization of problem-space attacks (Sec-
tion 4.3) which lays the foundation for identifying key require-
ments and commonalities of different domains, proves necessary

34 machine learning for security in hostile environments

and sufficient conditions for problem-space attacks, and allows
for the comparison of prior approaches—where existing strate-
gies for adversarial malware generation are among the weakest
in terms of attack robustness. We introduce the concept of side-
effect features, which reveals connections between feature space
and problem space, and enables principled reasoning about
search strategies for problem-space attacks.

• We propose a novel problem-space attack in the Android mal-
ware domain, which relies on automated software transplan-
tation [28] and overcomes limitations of prior work in terms of
semantics and preprocessing robustness (Section 4.4). We exper-
imentally demonstrate (Section 4.5) on a dataset of 170K apps
from 2017–2018 that it is feasible for an attacker to evade a state-
of-the-art malware classifier, DREBIN [19], and its hardened
version, Sec-SVM [77]. The time required to generate an adver-
sarial example is in the order of minutes, demonstrating that the
“adversarial-malware as a service” scenario is a realistic threat,
and existing defenses are not sufficient.

• We demonstrate how our set of problem-space transformations
can facilitate attacks using fully realizable Universal Adversarial
Perturbations (UAPs) which are low-cost perturbations that can
be reused across multiple malware examples (Section 4.6).

• We show how introducing problem-space knowledge into robust
training procedures can mitigate the threat of realizable attacks.
Our defense raises the cost for attackers and disincentivizes the
use of powerful UAPs (Section 4.6.4).

The content of this chapter has been previously presented in the
following publications:

• Pierazzi F.*, Pendlebury F.*, Cortellazzi J., Cavallaro L. Intriguing
Properties of Adversarial ML Attacks in the Problem Space. In
Proc. of the IEEE Symposium of Security and Privacy (S&P). 2020.

• Labaca-Castro R., Muñoz-Gonzàlez L., Pendlebury F., Rodosek
G. D., Pierazzi F., Cavallaro L. Universal Adversarial Perturba-
tions for Malware. In arXiv CoRR repository (preprint). 2021.

4.2 Overview

Crafting realizable evasive inputs
is difficult due to the inverse-
feature mapping problem.

Adversarial machine learning (ML) attacks are being studied ex-
tensively in multiple domains [34] and pose a major threat to the
large-scale deployment of machine learning solutions in security-
critical contexts. However, when it comes to generating realizable
test-time evasion attacks in the so-called problem space, where real
input-space objects must be modified to correspond to adversar-
ial feature vectors, there exists a major challenge due to the inverse
feature-mapping problem [186, 185, 231, 131, 37, 38].

realizable adversarial attacks in security 35

This problem describes how it is often not possible to convert
a feature vector into a problem-space object because the feature-
mapping function is neither invertible nor differentiable. In ad-
dition, the modified problem-space object needs to be a valid,
inconspicuous member of the considered domain, and robust to
non-ML preprocessing. Existing work has investigated problem-
space attacks for various data modalities such as text [10, 169], ma-
licious PDFs [185, 184, 37, 318, 164, 73], Android malware [77, 321],
Windows malware [154, 240], network traffic [100, 16, 17, 65], in-
dustrial control systems [331], source code attribution [231], mali-
cious Javascript [92], and eyeglass frames to thwart facial recogni-
tion [255]. However, while there is a good understanding on how
to perform attacks in the feature space (manipulating only the nu-
merical representation of the examples) [51], it is less clear what
the requirements are for an attack in the problem space, and how
to compare strengths and weaknesses of existing solutions in a
principled way. We propose a novel formaliza-

tion to unify feature-space and
realizable problem-space attacks...

Motivated by examples on software, we propose a novel for-
malization of problem-space attacks, which lays the foundation for
identifying key requirements and commonalities among different
domains. We identify four major categories of constraints to be
defined at design time: which problem-space transformations are
available to be performed automatically while looking for an adver-
sarial variant; which object semantics must be preserved between the
original and its adversarial variant; which non-ML preprocessing the
attack should be robust to (e.g., image compression, code pruning);
and how to ensure that the generated object is a plausible member
of the input distribution, especially upon manual inspection. We
introduce the concept of side-effect features as the by-product of try-
ing to generate a problem-space transformation that perturbs the
feature space in a certain direction. This allows us to shed light on
the relationships between feature space and problem space: we de-
fine and prove necessary and sufficient conditions for the existence
of problem-space attacks, and identify two main types of search
strategies (gradient-driven and problem-driven) for generating
problem-space adversarial objects.

...and explore the requirements,
constraints, and by-products of
problem-space attacks...

We further use our formalization to describe several interesting
attacks proposed in both problem space and feature space. This
analysis shows that prior promising problem-space attacks in the
malware domain [240, 321, 119] suffer from limitations, especially
in terms of semantics and preprocessing robustness. For exam-
ple, Grosse et al. [119] only add individual features to the Android
manifest, which preserves semantics, but can be removed with pre-
processing (e.g., by detecting unused permissions); moreover, they
are constrained by a maximum feature-space perturbation, which
we show is less relevant for problem-space attacks. Rosenberg et al.
[240] leave artifacts during the app transformation which are easily
detected through lightweight non-ML techniques. Yang et al. [321]
may significantly alter the semantics of the program (which may

36 machine learning for security in hostile environments

account for the high failure rate observed in their mutated apps),
and do not specify which preprocessing techniques they consider.
These inspire us to propose, guided by our formalization, a novel

...which allows us to identify and
improve upon weaknesses in prior
problem-space Android malware
evasion attacks.

problem-space attack in the Android malware domain that over-
comes the limitations of existing solutions.

4.3 Problem-Space Adversarial ML Attacks

We focus on evasion attacks [37, 51, 131], where the adversary mod-
ifies objects at test time to induce targeted misclassifications. We
provide background from related literature on feature-space attacks
(Section 4.3.1), and then introduce a novel formalization of problem-
space attacks (Section 4.3.2). Finally, we highlight the main param-
eters of our formalization by instantiating it on both traditional
feature-space and more recent problem-space attacks from related
works in several domains (Section 4.3.3). To ease readability, a full
list of symbols used is reported in Table 1.

4.3.1 Feature-Space Attacks

We remark that all definitions of feature-space attacks (Section 4.3.1)
have already been consolidated in related work [34, 51, 77, 119, 279,
131, 72, 178]; we report them for completeness and as a basis for
identifying relationships between feature-space and problem-space
attacks in the following subsections.

We consider a problem space Z (also referred to as input space)
that contains objects of a considered domain (e.g., images [51],
audio [49], programs [231], PDFs [184]). We assume that each object
z ∈ Z is associated with a ground-truth label y ∈ Y , where Y is
the space of possible labels. Machine learning algorithms mostly
work on numerical vector data [39], hence the objects in Z must be
transformed into a suitable format for ML processing. Given a particular model and

input domain...Definition 6 (Feature Mapping) A feature mapping is a function
ϕ : Z −→ X ⊆ Rn that, given a problem-space object z ∈ Z , generates
an n-dimensional feature vector x ∈ X , such that ϕ(z) = x. This also
includes implicit/latent mappings, where the features are not observable
in the input but are instead implicitly computed by the model (e.g., deep
learning [111]).

Definition 7 (Discriminant Function) Given an m-class machine
learning classifier g : X −→ Y , a discriminant function h : X × Y −→
R outputs a real number h(x, i), for which we use the shorthand hi(x),
that represents the fitness of object x to class i ∈ Y . Higher outputs of the
discriminant function hi represent better fitness to class i. In particular,
the predicted label of an object x is g(x) = ŷ = arg maxi∈Y hi(x).

The purpose of a targeted feature-space attack is to modify an
object x ∈ X with assigned label y ∈ Y to an object x′ that is

realizable adversarial attacks in security 37

classified to a target class t ∈ Y , t 6= y (i. e., to modify x so that
it is misclassified as a target class t). The attacker can identify a
perturbation δ to modify x so that g(x + δ) = t by optimizing a
carefully-crafted attack objective function. We refer to the definition of
attack objective function in Carlini and Wagner [51] and in Biggio
and Roli [34], which takes into account high-confidence attacks and
multi-class settings.

Definition 8 (Attack Objective Function) Given an object x ∈ X and
a target label t ∈ Y , an attack objective function f : X × Y −→ R is
defined as follows:

f (x, t) = max
i 6=t
{hi(x)} − ht(x) , (4.1)

for which we use the shorthand ft(x). Generally, x is classified as a mem-
ber of t if and only if ft(x) < 0. An adversary can also enforce a desired
attack confidence κ ∈ R such that the attack is considered successful if
and only if ft(x) < −κ.

The intuition is to minimize ft by modifying x in directions that
follow the negative gradient of ft, i. e., to get x closer to the target
class t. ...evasion attacks may find invalid

inputs...In addition to the attack objective function, a considered problem-
space domain may also come with constraints on the modification
of the feature vectors. For example, in the image domain the value
of pixels must be bounded between 0 and 255 [51]; in software,
some features in x may only be added but not removed (e.g., API
calls [77]).

Definition 9 (Feature-Space Constraints) We define Ω as the set
of feature-space constraints, i. e., a set of constraints on the possible
feature-space modifications. The set Ω reflects the requirements of realistic
problem-space objects. Given an object x ∈ X , any modification of its
feature values can be represented as a perturbation vector δ ∈ Rn; if δ

satisfies Ω, we borrow notation from model theory [311] and write δ |= Ω.

As examples of feature-space constraints, in the image do-
main [e.g., 51, 34] the perturbation δ is subject to an upper bound
based on Lp norms (||δ||p ≤ δmax), to preserve similarity to the orig-
inal object; in software [e.g., 77, 119], only some features of x may
be modified, such that δlb � δ � δub (where δ1 � δ2 implies each
element of δ1 is ≤ the corresponding i-th element in δ2).

We can now formalize the traditional feature-space attack as in
related work [51, 37, 77, 34, 213].

Definition 10 (Feature-Space Attack) Given a machine learning
classifier g, an object x ∈ X with label y ∈ Y , and a target label t ∈
Y , t 6= y, the adversary aims to identify a perturbation vector δ ∈ Rn

such that g(x + δ) = t. The desired perturbation can be achieved by
solving the following optimization problem:

δ∗ = arg min
δ∈Rn

ft(x + δ) (4.2)

subject to: δ |= Ω . (4.3)

38 machine learning for security in hostile environments

A feature-space attack is successful if ft(x + δ∗) < 0 (or less than −κ, if a
desired attack confidence is enforced).

...which are not well-defined in the
feature space...

Without loss of generality, we observe that the feature-space
attacks definition can be extended to ensure that the adversarial ex-
ample is closer to the training data points (e.g., through the tuning
of a parameter λ that penalizes adversarial examples generated in
low density regions, as in the mimicry attacks of Biggio et al. [37]).

4.3.2 Problem-Space Attacks

This section presents a novel formalization of problem-space attacks
and introduces insights into the relationship between feature space
and problem space.

Inverse Feature-Mapping Problem. The major challenge that
complicates (and, in most cases, prevents) the direct applicabil-
ity of gradient-driven feature-space attacks to find problem-space
adversarial examples is the so-called inverse feature-mapping prob-
lem [186, 185, 231, 131, 37, 38]. As an extension, Quiring et al. [231]
discuss the feature-problem space dilemma, which highlights the diffi-
culty of moving in both directions: from feature space to problem
space, and from problem space to feature space. In most cases, the
feature mapping function ϕ is not bijective, i. e., not injective and
not surjective. This means that given z ∈ Z with features x, and a ...and do not map to any possi-

ble corresponding object in the
problem-space.

feature-space perturbation δ∗, there is no one-to-one mapping that
allows going from x + δ∗ to an adversarial problem-space object z′.
Nevertheless, there are two additional scenarios. If ϕ is not invert-
ible but is differentiable, then it is possible to backpropagate the gra-
dient of ft(x) from X to Z to derive how the input can be changed
in order to follow the negative gradient (e.g., to know which input
pixels to perturbate to follow the gradient in the deep-learning la-
tent feature space). If ϕ is not invertible and not differentiable, then
the challenge is to find a way to map the adversarial feature vector
x′ ∈ X to an adversarial object z′ ∈ Z , by applying a transformation
to z in order to produce z′ such that ϕ(z′) is “as close as possible”
to x′; i. e., to follow the gradient towards the transformation that
most likely leads to a successful evasion [154]. In problem-space
settings such as software, the function ϕ is typically not invertible
and not differentiable, so the search for transforming z to perform
the attack cannot be purely gradient-based.

In this section, we consider the general case in which the fea-
ture mapping ϕ is not differentiable and not invertible (i. e., the
most challenging setting), and we refer to this context to formalize
problem-space evasion attacks.

First, we define a problem-space transformation operator through
which we can alter problem-space objects. Due to their generality,
we adapt the code transformation definitions from the compiler
engineering literature [5, 231] to formalize general problem-space
transformations.

realizable adversarial attacks in security 39

Definition 11 (Problem-Space Transformation) A problem-space
transformation T : Z −→ Z takes a problem-space object z ∈ Z as input
and modifies it to z′ ∈ Z . We refer to the following notation: T(z) = z′.

The possible problem-space transformations are either addition,
removal, or modification (i. e., combination of addition and removal).
In the case of programs, obfuscation is a special case of modification.

Definition 12 (Transformation Sequence) A transformation sequence
T = Tn ◦ Tn−1 ◦ · · · ◦ T1 is the subsequent application of problem-space
transformations to an object z ∈ Z .

A problem-space object is made
evasive through a series of trans-
formations...

Intuitively, given a problem-space object z ∈ Z with label y ∈ Y ,
the purpose of the adversary is to find a transformation sequence
T such that the transformed object T(z) is classified into any target
class t chosen by the adversary (t ∈ Y , t 6= y). One way to achieve
such a transformation is to first compute a feature-space perturba-
tion δ∗, and then modify the problem-space object z so that features
corresponding to δ∗ are carefully altered. However, in the general
case where the feature mapping ϕ is neither invertible nor differen-
tiable, the adversary must perform a search in the problem-space
that approximately follows the negative gradient in the feature
space. However, this search is not unconstrained, because the ad-
versarial problem-space object T(z) must be realistic.

Problem-Space Constraints. Given a problem-space object z ∈
Z , a transformation sequence T must lead to an object z′ = T(z)
that is valid and realistic. To express this formally, we identify four
main types of constraints common to any problem-space attack:

1. Available transformations, which describe which modifications
can be performed in the problem-space by the attacker (e.g., only
addition and not removal).

2. Preserved semantics, the semantics to be preserved while mutat-
ing z to z′, with respect to specific feature abstractions which
the attacker aims to be resilient against (e.g., in programs, the
transformed object may need to produce the same dynamic call
traces). Semantics may also be preserved by construction [e.g.,
231]. ...which are subject to a set of

problem-space constraints that we
identify.

3. Plausibility (or Inconspicuousness), which describes which (quali-
tative) properties must be preserved in mutating z to z′, so that z
appears realistic upon manual inspection. For example, often an
adversarial image must look like a valid image from the training
distribution [51]; a program’s source code must look manually
written and not artificially or inconsistently altered [231]. In the
general case, verification of plausibility may be hard to automate
and may require human analysis.

4. Robustness to preprocessing, which determines which non-ML
techniques could disrupt the attack (e.g., filtering in images, dead
code removal in programs).

40 machine learning for security in hostile environments

These constraints have been sparsely mentioned in prior litera-
ture [37, 231, 318, 34], but have never been identified together as a
set for problem-space attacks. When designing a novel problem-
space attack, it is fundamental to explicitly define these four types
of constraints, to clarify strengths and weaknesses. We believe that
this framework captures all nuances of the current state-of-the-art
for a thorough evaluation and comparison, but welcome future
research that uses this as a foundation to identify new constraints.

We now formally define the constraints. First, similarly to [77,
34], we define the space of available transformations.

Definition 13 (Available Transformations) We define T as the space
of available transformations, which determines which types of auto-
mated problem-space transformations T the attacker can perform. In gen-
eral, it determines if and how the attacker can add, remove, or edit parts of
the original object z ∈ Z to obtain a new object z′ ∈ Z . We write T ∈ T
if a transformation sequence consists of available transformations.

They are constrained by the at-
tacker’s capability to perform
certain transformations...

For example, the pixels of an image may be modified only if they
remain within the range of integers 0 to 255 [e.g., 51]; in programs,
an adversary may only add valid no-op API calls to ensure that
modifications preserve functionality [e.g., 240].

Moreover, the attacker needs to ensure that some semantics
are preserved during the transformation of z, according to some
feature abstractions. Semantic equivalence is known to be generally
undecidable [28, 231]; hence, as in Barr et al. [28], we formalize
semantic equivalence through testing, by borrowing notation from
denotational semantics [227]. ...the need to retain the mali-

cious functionality of the original
object...Definition 14 (Preserved Semantics) Let us consider two problem-

space objects z and z′ = T(z), and a suite of automated tests Υ to verify
preserved semantics. We define z and z′ to be semantically equivalent
with respect to Υ if they satisfy all its tests τ ∈ Υ, where τ : Z ×Z −→
B. In particular, we denote semantics equivalence with respect to a test
suite Υ as follows:

JzKτ = Jz′Kτ , ∀τ ∈ Υ , (4.4)

where JzKτ denotes the semantics of z induced during test τ.

Informally, Υ consists of tests that are aimed at evaluating
whether z and z′ (or parts of them) lead to the same abstract rep-
resentations in a certain feature space. In other words, the tests in
Υ model preserved semantics. For example, in programs a typical
test aims to verify that malicious functionality is preserved; this is
done through tests where, given a certain test input, the program
produces exactly the same output [28]. Additionally, the attacker
may want to ensure that an adversarial program (z′) leads to the
same instruction trace as its benign version (z)—so as not to raise
suspicion in feature abstractions derived from dynamic analysis.

realizable adversarial attacks in security 41

Plausibility is more subjective than semantic equivalence, but in
many scenarios it is critical that an adversarial object is inconspicu-
ous when manually audited by a human. In order to be plausible,
an analyst must believe that the adversarial object is a valid mem-
ber of the problem-space distribution.

Definition 15 (Plausibility) We define Π as the set of (typically) man-
ual tests to verify plausibility. We say z looks like a valid member of the
data distribution to a human being if it satisfies all tests π ∈ Π, where
π : Z −→ B.

...to continue appearing like a
plausible member of the valid data
distribution to an analyst...

Plausibility is often hard to verify automatically; previous work
has often relied on user studies with domain experts to judge the
plausibility of the generated objects (e.g., program plausibility
in [231], realistic eyeglass frames in [255]). Plausibility in software-
related domains may also be enforced by construction during the
transformation process, e.g., by relying on automated software
transplantation [28, 321].

In addition to semantic equivalence and plausibility, adversarial
problem-space objects need to ensure they are robust to non-ML
automated preprocessing techniques that could alter properties on
which the adversarial attack depends, compromising the attack.

Definition 16 (Robustness to Preprocessing) We define Λ as the set
of preprocessing operators an object z′ = T(z) should be resilient to. We
say z′ is robust to preprocessing if A(T(z)) = T(z) for all A ∈ Λ, where
A : Z −→ Z simulates an expected preprocessing.

Examples of operators in Λ include compression to remove pixel
artifacts (in images), filters to remove noise (in audio), and program
analyses to remove dead or redundant code (in programs). ...and to be robust to non-ML pre-

processing such as static analysis.Properties affected by preprocessing are often related to fragile
and spurious features learned by the target classifier. While taking ad-
vantage of these may be necessary to demonstrate the weaknesses
of the target model, an attacker should be aware that these brittle
features are usually the first to change when a model is improved.
Given this, a stronger attack is one that does not rely on them.

As a concrete example, in an attack on authorship attribu-
tion, Quiring et al. [231] purposefully omit layout features (such
as the use of spaces vs. tabs) which are trivial to change. Addition-
ally, Xu et al. [318] discover the presence of font objects as a critical
(but erroneously discriminative) feature following their problem-
space attack on PDF malware. These are features that are cheap
for an attacker to abuse but can be easily removed by the appli-
cation of some preprocessing. As a defender, investigation of this
constraint will help identify features that are weak to adversarial
attacks. Note that knowledge of preprocessing can also be exploited
by the attacker (e.g., in scaling attacks [315]).

We can now define a fundamental set of problem-space con-
straint elements from the previous definitions.

42 machine learning for security in hostile environments

Definition 17 (Problem-Space Constraints) We define the problem-
space constraints Γ = {T , Υ, Π, Λ} as the set of all constraints satisfy-
ing T , Υ, Π, Λ. We write T(z) |= Γ if a transformation sequence applied
to object z ∈ Z satisfies all the problem-space constraints, and we refer to
this as a valid transformation sequence. The problem-space constraints Γ
determine the feature-space constraints Ω, and we denote this relationship
as Γ ` Ω (i.e., Γ determines Ω); with a slight abuse of notation, we can
also write that Ω ⊆ Γ, because some constraints may be specific to the
problem space (e.g., program size similar to that of benign applications)
and may not be possible to enforce in the feature space X .

Satisfying problem-space con-
straints may induce unwanted
side-effect features...

Side-Effect Features. Satisfying the problem-space constraints
Γ further complicates the inverse feature mapping, as Γ is a super-
set of Ω. Moreover, enforcing Γ may require substantially altering
an object z to ensure satisfaction of all constraints during muta-
tions. Let us focus on an example in the software domain, where z
is a program with features x; if we want to transform z to z′ such
that ϕ(z′) = x + δ, we may want to add to z a program o where
ϕ(o) = δ. However, the union of z and o may have features dif-
ferent from x + δ, because other consolidation operations are re-
quired (e.g., name deduplication, class declarations, resource name
normalization)—which cannot be feasibly computed in advance for
each possible object in Z . Hence, after modifying z in an attempt
to obtain a problem-space object z′ with certain features (e.g., close
to x + δ), the attacker-modified object may have some additional
features that are not related to the intended transformation (e.g.,
adding an API which maps to a feature in δ), but are required to
satisfy all the problem-space constraints in Γ (e.g., inserting valid
parameters for the API call, and importing dependencies for its in-
vocation). We call side-effect features η the features that are altered
in z′ = T(z) specifically for the satisfaction of problem-space con-
straints. We observe that these features do not follow any particular
direction of the gradient, and hence they could have both a positive
or negative impact on the classification score.

...as the attack vector is projected
back to the set of feasible problem-
space inputs.

Analogy with Projection. Figure 4.1 presents an analogy be-
tween side-effect features η and the notion of projection in numerical
optimization [39], which helps explain the nature and impact of
η in problem-space attacks. The right half corresponds to higher
values of a discriminant function h(x) and the left half to lower val-
ues. The vertical central curve (where the heatmap value is equal to
zero) represents the decision boundary: objects on the left-half are
classified as negative (e.g., benign), and objects on the right-half as
positive (e.g., malicious). The goal of the adversary is to conduct a
maximum confidence attack that has an object misclassified as the neg-
ative class. The thick solid line represents the feasible feature space
determined by constraints Ω, and the thin solid line the feasible prob-
lem space determined by Γ (which corresponds to two unconnected
areas). We assume that the initial object x ∈ X is always within the
feasible problem space. In this example, the attacker first conducts

realizable adversarial attacks in security 43

Ω

Γ

Γ

x

x + δ*

x + δ* + η

Figure 4.1: Projection of a
feature-space attack vector
to the feasible problem space,
resulting in side-effect features
η. Contours depict the value
of h(x), where negative val-
ues indicate the target class
of the evasion. Small arrows
show directions of the nega-
tive gradient. The thick solid
line depicts the feasible feature
space determined by Ω, and
the thin solid line that deter-
mined by Γ (more restrictive).
The dotted arrow depicts the
gradient-based attack from x to
x + δ∗, which is then projected
to x + δ∗ + η to fit within the
feasible problem space.

a gradient-based attack in the feature space on object x, which re-
sults in a feature vector x + δ∗, which is classified as negative with
high-confidence. However, this point is not in the feasibility space
of constraints Γ, which is more restrictive than that of Ω. Hence,
the attacker needs to find a projection that maps x + δ∗ back to the
feasible problem-space regions, which leads to the addition of a
side-effect feature vector η.

Definition 18 (Side-Effect Feature Vector) We define η as the side-
effect feature vector that results from enforcing Γ while choosing a
sequence of transformations T such that T(z) |= Γ. In other words, η

are the features derived from the projection of a feature-space attack onto a
feasibility region that satisfies problem-space constraints Γ.

We observe that in settings where the feature mapping ϕ is nei-
ther differentiable nor invertible, and where the problem-space
representation is very different from the feature-space represen-
tation (e.g., unlike in images or audio), it is generally infeasible
or impossible to compute the exact impact of side-effect features
on the objective function in advance—because the set of problem-
space constraints Γ cannot be expressed analytically in closed-form.
Hence the attacker needs to find a transformation sequence T such
that ϕ(T(z)) = ϕ(z′) is within the feasibility region of problem-
space constraints Γ.

It is relevant to observe that, in the general case, if an object zo

is added to (or removed from) two different objects z1 and z2, it is

44 machine learning for security in hostile environments

possible that the resulting side-effect feature vectors η1 and η2 are
different (e.g., in the software domain [231]).

Considerations on Attack Confidence. There are some impor-
tant characteristics of the impact of the side-effect features η on
the attack objective function. If the attacker performs a maximum-
confidence attack in the feature space under constraints Ω, then the
confidence of the problem-space attack will always be lower or equal
than the one in the feature-space attack. This is intuitively repre-
sented in Figure 4.1, where the point is moved to the maximum-
confidence attack area within Ω, and the attack confidence is
reduced after projection to the feasibility space of the problem
space, induced by Γ. In general, the confidence of the feature- and
problem-space attacks could be equal, depending on the constraints
Ω and Γ, and on the shape of the discriminant function h, which
is also not necessarily convex (e.g., in deep learning [111]). In In the majority of cases, side-

effect features may have positive
or negative impact on the attack
success rate.

the case of low-confidence feature-space attacks, projecting into the
problem-space feasibility constraint may result in a positive or neg-
ative impact (not known a priori) on the value of the discriminant
function. This can be seen from Figure 4.1, where the object x + δ∗

would be found close to the center of the plot, where h(x) = 0.
Problem-Space Attack. We now have all the components re-

quired to formalize a problem-space attack.

Definition 19 (Problem-Space Attack) We define a problem-space
attack as the problem of finding the sequence of valid transformations T
for which the object z ∈ Z with label y ∈ Y is misclassified to a target
class t ∈ Y as follows:

argminT∈T ft(ϕ(T(z))) = ft(x + δ∗ + η) (4.5)

subject to: JzKτ = JT(z)Kτ , ∀τ ∈ Υ (4.6)

π(T(z)) = 1, ∀π ∈ Π (4.7)

A(T(z)) = T(z), ∀A ∈ Λ (4.8)

where η is a side-effect feature vector that separates the feature vector
generated by T(z) from the theoretical feature-space attack x + δ∗ (under
constraints Ω). An equivalent, more compact, formulation is as follows:

argminT∈T ft(ϕ(T(z))) = ft(x + δ∗ + η) (4.9)

subject to: T(z) |= Γ . (4.10)

Search Strategy. The typical search strategy for adversarial per-
turbations in feature-space attacks is based on following the nega-
tive gradient of the objective function through some numerical opti-
mization algorithm, such as stochastic gradient descent [34, 51, 49].
However, it is not possible to directly apply gradient descent in
the general case of problem-space attacks, when the feature space
is not invertible nor differentiable [231, 34]; and it is even more
complicated if a transformation sequence T produces side-effect
features η 6= 0. In the problem space, we identify two main types of
search strategy: problem-driven and gradient-driven. In the problem-
driven approach, the search of the optimal T proceeds heuristically

realizable adversarial attacks in security 45

by beginning with random mutations of the object z, and then
learning from experience how to appropriately mutate it further
in order to misclassify it to the target class (e.g., using Genetic Pro-
gramming [318] or variants of Monte Carlo tree search [231]). This
approach iteratively uses local approximations of the negative gra-
dient to mutate the objects. The gradient-driven approach attempts
to identify mutations that follow the negative gradient by rely-
ing on an approximate inverse feature mapping (e.g., in PDF mal-
ware [185], in Android malware [321]). If a search strategy equally
makes extensive use of both problem-driven and gradient-driven
methods, we call it a hybrid strategy. We note that search strategies
may have different trade-offs in terms of effectiveness and costs, de-
pending on the time and resources they require. While there are
some promising avenues in this challenging but important line of
research [158], it warrants further investigation in future work.

Viable attacks can be found
through mutating objects ran-
domly or with gradient informa-
tion as guidance...

Feature-space attacks can still give us some useful information:
before searching for a problem-space attack, we can verify whether
a feature-space attack exists, which is a necessary condition for
realizing the problem-space attack.

Theorem 1 (Necessary Condition for Problem-Space Attacks)
Given a problem-space object z ∈ Z of class y ∈ Y , with features ϕ(z) =
x, and a target class t ∈ Y , t 6= y, there exists a transformation sequence
T that causes T(z) to be misclassified as t only if there is a solution for
the feature-space attack under constraints Ω. More formally, only if:

∃δ∗ = arg min
δ∈Rn :δ|=Ω

ft(x + δ) : ft(x + δ∗) < 0 . (4.11)

...but they can always be found
if a valid feature-space attack
exists...

Proof of Theorem 1. We proceed with a proof by contradiction.
Let us consider a problem-space object z ∈ Z with features x ∈ X ,
which we want to misclassify as a target class t ∈ Y . Without loss
of generality, we consider a low-confidence attack, with desired at-
tack confidence κ = 0 (see Equation 8). We assume by contradiction
that there is no solution to the feature-space attack; more formally,
that there is no solution δ∗ = arg minδ∈Rn :δ|=Ω ft(x + δ) that satis-
fies ft(x + δ∗) < 0. We now try to find a transformation sequence
T such that ft(ϕ(T(z))) < 0. Let us assume that T∗ is a transfor-
mation sequence that corresponds to a successful problem-space
attack. By definition, T∗ is composed by individual transforma-
tions: a first transformation T1, such that ϕ(T1(z)) = x + δ1; a
second transformation T2 such that ϕ(T2(T1(z)) = x + δ1 + δ2; a
k-th transformation ϕ(Tk(· · · T2(T1(z)))) = x + ∑k δk. We recall that
the feature-space constraints are determined by the problem-space
constraints, i.e., Γ ` Ω, and that, with slight abuse of notation, we
can write that Ω ⊆ Γ; this means that the search space allowed by
Γ is smaller or equal than that allowed by Ω. Let us now replace
∑k δk with δ†, which is a feature-space perturbation correspond-
ing to the problem-space transformation sequence T, such that
ft(x + δ†) < 0 (i.e., the sample is misclassified). However, since the
constraints imposed by Γ are stricter or equal than those imposed

46 machine learning for security in hostile environments

by Ω, this means that δ† must be a solution to arg minδ∈Ω ft(x + δ)

such that ft(x + δ†) < 0. However, this is impossible, because we
hypothesized that there was no solution for the feature-space attack
under the constraints Ω. Hence, having a solution in the feature-
space attack is a necessary condition for finding a solution for the
problem-space attack. �

We observe that Theorem 1 is necessary but not sufficient because,
although it is not required to be invertible or differentiable, some
sort of “mapping” between problem- and feature-space perturba-
tions needs to be known by the attacker. A sufficient condition for
a problem-space attack, reflecting the attacker’s ideal scenario, is
knowledge of a set of problem-space transformations which can
alter feature values arbitrarily. This describes the scenario for some
domains, such as images [51, 112], in which the attacker can modify
any pixel value of an image independently. ...and the attacker knows problem-

space transformations that can
modify any feature by any value...

Theorem 2 (Sufficient Condition for Problem-Space Attacks)
Given a problem-space object z ∈ Z of class y ∈ Y , with features ϕ(z) =
x, and a target class t ∈ Y , t 6= y, there exists a transformation sequence
T that causes x to be misclassified as t if Equation 4.11 and Equation 4.12
are satisfied:

∃δ∗ = arg min
δ∈Rn :δ|=Ω

ft(x + δ) : ft(x + δ∗) < 0 (4.11)

∀δ ∈ Rn : δ |= Ω, ∃T : T(z) |= Γ, ϕ(T(z)) = x + δ (4.12)

Informally, an attacker is always able to find a problem-space attack if a
feature-space attack exists (necessary condition) and they know problem-
space transformations that can modify any feature by any value (sufficient
condition).

Proof of Theorem 2. The existence of a feature-space attack
(Equation 4.11) is the necessary condition, which has been proved
for Theorem 1. Here we need to prove that, with Equation 4.12,
the condition is sufficient for the attacker to find a problem-space
transformation that misclassifies the object. Another way to write
Equation 4.12 is to consider that the attacker knows transformations
that affect individual features only (modifying more than one fea-
ture will result as a composition of such transformations). Formally,
for any object z ∈ Z with features ϕ(z) = x ∈ X , for any feature-
space dimension Xi of X , and for any value v ∈ domain(Xi), let us
assume the attacker knows a valid problem-space transformation
sequence T : T(z) |= Γ, ϕ(T(z)) = x′, such that:

x′i = xi + v, xi ∈ x, x′i ∈ x′ (4.13)

x′j = xj, ∀j 6= i, xj ∈ x, x′j ∈ x′ (4.14)

Intuitively, these two equations refer to the existence of a problem-
space transformation T that affects only one feature Xi in X by any
amount v ∈ domain(Xi). In this way, given any adversarial feature-
space perturbation δ∗, the attacker is sure to find a transformation

realizable adversarial attacks in security 47

sequence that modifies each individual feature step-by-step. In
particular, let us consider idx0, . . . , idxq−1 corresponding to the q >

0 values in δ∗ that are different from 0 (i.e., values corresponding
to an actual feature-space perturbation). Then, a transformation
sequence T : T(z) |= Γ, T = Tidxq−1 ◦ Tidxq−2 ◦ · · · ◦ Tidx0 can
always be constructed by the attacker to satisfy ϕ(T(z)) = x + δ∗.
We highlight that we do not consider the existence of a specific
transformation in Z that maps to x + δ∗ because that may not be
known by the attacker; hence, the attacker may never learn such a
specific transformation. Thus, Equation 4.12 must be valid for all
possible perturbations within the considered feature space. �

In the general case, while there may exist an optimal feature-
space perturbation δ∗, there may not exist a problem-space trans-
formation sequence T that alters the feature space of T(z) exactly
so that ϕ(T(z)) = x + δ∗. This is because, in practice, given a tar- ...but realistically their trans-

formations are likely to be con-
strained and introduce side-effect
features.

get feature-space perturbation δ∗, a problem-space transformation
may generate a vector ϕ(T(z)) = x + δ∗ + η∗, where η∗ 6= 0 (i. e.,
where there may exist at least one i for which ηi 6= 0) due to the
requirement that problem-space constraints Γ must be satisfied.
This prevents easily finding a problem-space transformation that
follows the negative gradient. Given this, the attacker is forced to
apply some search strategy based on the available transformations.

Corollary 2.1 If Theorem 2 is satisfied only on a subset of feature dimen-
sions Xi in X , which collectively create a subspace Xeq ⊂ X , then the
attacker can restrict the search space to Xeq, for which they know that an
equivalent problem/feature-space manipulation exists.

4.3.3 Describing problem-space attacks in different domains

Table 4.1 illustrates the main parameters that need to be explic-
itly defined while designing problem-space attacks by consid-
ering a representative set of adversarial attacks in different do-
mains: images [51], facial recognition [255], text [224], PDFs [318],
Javascript [92], code attribution [231], and three problem-space at-
tacks applicable to Android: two from the literature [240, 321] and
ours proposed in Section 4.4. Our formalization can describe

prior attacks across a wide variety
of domains.

This table shows the expressiveness of our formalization, and
how it is able to reveal strengths and weaknesses of different pro-
posals. In particular, we identify some major limitations in two
recent problem-space attacks [240, 321]. Rosenberg et al. [240] leave
artifacts during the app transformation which are easily detected
without the use of machine learning (see Section 4.8 for details),
and relies on no-op APIs which could be removed through dynamic
analysis. Yang et al. [321] do not specify which preprocessing they
are robust against, and their approach may significantly alter the
semantics of the program—which may account for the high failure
rate they observe in the mutated apps. This inspired us to propose
a novel attack that overcomes such limitations.

Table 4.1: Problem-space evasion attacks from prior work across different settings and domains, modeled with our formalization.

Domains

Image
Classification [51]

Facial
Recognition [255]

Audio [49] Text [169] Code
Attribution [231]

Javascript [92] PDF [318] Windows [154] Windows
RNN [240]

Android Trans-
plantation [321]

Our Android
Attack (Section 4.4)

Th
r

e
a

t
M

o
d

e
l

Knowledge θ PK. PK. PK. PK and ZK. ZK. ZK. ZK. PK. ZK. ZK. PK.

Feature
mapping ϕ

Invertible: no.
Differentiable: yes.

Invertible: no.
Differentiable: yes.

Invertible: no.
Differentiable: yes.

Invertible: no.
Differentiable: yes.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Invertible: no.
Differentiable: no.

Feature
space X

Latent feature
space of pixels.

Latent feature
space of pixels.

Latent feature
space of audio
stream.

Latent feature
space of word
embeddings.

Syntactic and
lexical static
features.

Static syntactic,
based on AST,
PDG, CFG.

Static (metadata,
object keywords
and properties,
structural).

Feature mapping of
MalConv [232].

Dynamic API
sequences, static
printable strings
(also in latent
feature space).

Static analysis
(RTLD
model [321]).

Lightweight static
analysis (binary
features).

Problem
space Z

Image (pixels). Printed image
(pixels).

Audio (signal). Text. Software (source
code).

Software (source
code).

PDF. Software (binary). Software
(bytecode).

Software
(bytecode).

Software
(bytecode).

Classifier g Deep learning. Deep learning. Deep learning. LR, CNN, LSTM
(PK) and numerous
major cloud
services (ZK).

Any classifier. Any classifier. SVM-RBF
(Hidost [271]),
RF (PDFRate [264]).

Deep learning
(MalConv [232]).

RNN/LSTM
variants, and
transferability to
traditional
classifiers (e.g., RF,
SVM).

kNN, DT, SVM
(and
VirusTotal [115]).

Linear SVM
(DREBIN [19]) and
its hardened
version
(Sec-SVM [77]).

Pr
o

b
l
e
m

-S
p
a

c
e

C
o

n
s
t
r

a
i
n

t
s

Available
Transforma-
tions
T

(i) Modification of
pixel values
(x + δ ∈ [0, 1]n).
(ii) Pixel values
must be integers
from 0 to 255

(discretization
problem).

(i) Modification of
pixel values
(x + δ ∈ [0, 1]n).
(ii) Pixel values
must be integers
from 0 to 255.
(iii) Pixels are
printable.
(iv) Robust to 3D
rotations.

(i) Addition of
audio noise.
(ii) Audio values
bounded (i.e.,
x + δ ∈ [−M,+M]).

(i) Character-level
perturbations.
(ii) Word-level
perturbations.

(i) Pre-defined set
of semantics-
preserving code
transformations
(i.e., modifications).
(ii) No changes to
the layout of the
code.

Transplantation of
semantically-
equivalent benign
ASTs.

Addition/Removal
of elements in the
PDF tree structure.

Addition of
carefully-crafted
bytes at the end of
the binary.

(i) Addition of
no-op API calls
with valid
parameters.
(ii) Repacking of
the input malware.

Code addition and
modification
(within the same
program) through
automated software
transplantation.

Code addition
through automated
software
transplantation.

Preserved
Semantics
Υ

An image should
not trivially become
an image of
another class, so
perturbation is
constrained

Human subjects
retain their original
identity and their
recognizability to
other humans
(compared to using
full face masks,
disguises, etc).

Semantics of
original audio
preserved by
constraining the
perturbation

Sentence meaning
preserved by
(i) replacing like
characters (ii) using
the GloVe model
[224] to swap
semantically (not
syntactically)
similar words.

Source code
semantics
preserved by
construction
through use of
semantics-
preserving
transformations.

Malicious
semantics
preserved by
construction
through use of
AST-based
transplantation.

Malicious network
functionality is still
present (verification
with Cuckoo
Sandbox).

Malicious code is
unaffected by only
appending
redundant bytes.

API sequences and
function return
values are
unchanged
(verification with
Cuckoo Monitor).

Malicious
semantics
preserved, tested
by installing and
executing each
application.

Malicious
semantics
preserved by
construction with
opaque predicates
(newly inserted
code is not
executed at
runtime).

Robustness to
Preprocessing
Λ

None explicitly
considered.

Discussed but not
robust to: the use
of specific
illumination or
distance of the
camera.

Robust to:
(i) Addition of
pointwise random
noise (ii) MP3

compression.
Discussed but not
robust to:
Over-the-air
playing.

Not explicitly
considered.

Robust to: removal
of layout features
(i.e., use of tabs vs
spaces) which are
trivial to alter.

Robust to: removal
of name
inconsistencies of
functions and
variables.

Discussed but not
robust to: removal
of spurious features
such as presence or
absence of font
objects (discovered
post-attack).

Discussed but not
robust to: removal
of redundant
(non-text) bytes.

Robust to: removal
of redundant code,
undeclared
variables, unlinked
resources,
undefined
references, name
conflicts.

Not explicitly
considered.

Robust to: removal
of redundant code,
undeclared
variables, unlinked
resources,
undefined
references, name
conflicts, no-op
instructions.

Plausibility
Π

Perturbation
constrained
(||δ||p ≤ δmax), to
ensure the changes
are imperceptible to
a human.

(i) Perturbation
constrained
(||δ||p ≤ δmax),
(ii) Smooth pixel
transitions so the
eyeglass frames
look legitimate
with plausible
deniability.

Perturbation
constrained
(dBx (δ) ≤ dBmax), so
that added noise
resembles white
background noise
largely
imperceptible to a
human.

(i) Ensure short
distance (e.g., edit
distance) of
modifications
(ii) User study to
verify plausibility.

The code does not
look suspicious and
seems written by a
human (survey
with developers).

By construction
through automated
AST
transplantation
(although
plausibility is
inhibited if certain
objects are used,
e.g., obsolete
ActiveX
components).

PDFs can still be
parsed and opened
by a reader.

None explicitly
considered.

The added no-op
API calls do not
raise errors.

Code is realistic by
construction
through automated
software
transplantation.

(i) Code is realistic
by construction
through use of
automated software
transplantation.
(ii) Mutated apps
install and start on
an emulator.

O
t
h

e
r

Search
Strategy

Gradient-driven.
Stochastic Gradient
Descent in the
feature space.

Gradient-driven.
Stochastic Gradient
Descent in the
feature space.

Gradient-driven.
Adam
optimizer [152]
with learning rate
10 and 5,000 max
iterations.

Hybrid (PK).
Gradients used to
choose ‘top’ words.
Problem-driven
(ZK). Without
gradients,
importance of
words is estimated
by scoring without
each word.

Problem-driven.
New Monte-Carlo
Search algorithm,
applied to the
problem space.

Problem-driven.
Search of
isomorphic
sub-AST graphs in
benign samples
that are equivalent
to malicious
sub-ASTs.

Problem-driven.
Genetic
Programming.

Gradient-driven.
Although the
feature mapping is
not invertible and
not differentiable,
the authors devise
an algorithm to
project byte
padding on to the
negative gradient.

Hybrid. Greedy
algorithm selects
API calls in order
to minimize
difference between
current and
previous iterations
w.r.t. the direction
of the Jacobian.

Gradient-driven.
Prioritizing
mutations that
affect features
typical of malware
evolution (e.g.,
phylogenetic trees)
and those present
in both malware
and goodware.

Gradient-driven.
We use an
approximate
inverse of the
feature mapping,
and then a greedy
algorithm in the
problem space to
follow the negative
gradient.

Side-effect
features η

η = 0 η = 0 η = 0 η = 0 η ' 0 η 6= 0 η ' 0 η = 0 η ' 0 η 6= 0 η 6= 0

realizable adversarial attacks in security 49

4.4 Attack on Android

Our formalization of problem-space attacks has allowed for the
identification of weaknesses in prior approaches to malware eva-
sion applicable to Android [321, 240]. Hence, we propose—through
our formalization—a novel problem-space attack in this domain
that overcomes these limitations, especially in terms of preserved
semantics and preprocessing robustness (see Section 4.3.3 and Sec-
tion 4.8 for a detailed comparison).

4.4.1 Threat Model

The threat model must be defined in terms of attacker knowledge
and capability, as in related literature [34, 277, 51]. While the at-
tacker knowledge is represented in the same way as in the tra-
ditional feature-space attacks, their capability also includes the
problem-space constraints Γ. For further context, please refer to the
discussion on threat models in Section 2.3. We propose a novel problem-space

attack against Android malware
detectors...

In our experiments here, we assume an attacker with perfect
knowledge θPK = (D,X , g, w). This follows Kerckhoffs’ princi-
ple [147] and ensures a defense does not rely on “security by ob-
scurity” by unreasonably assuming some properties of the defense
can be kept secret [52]. Although deep learning has been exten-
sively studied in adversarial attacks, we will show in Chapter 5

that—if retrained frequently—the DREBIN classifier [19] achieves
state-of-the-art performance for Android malware detection, which
makes it a suitable target classifier for our attack. DREBIN relies on
a linear SVM, and embeds apps in a binary feature-space X which
captures the presence/absence of components in Android applica-
tions in Z (such as permissions, URLs, Activities, Services, strings).
We assume to know classifier g and feature-space X , and train the
parameters w with SVM hyperparameter C = 1, as in the original
DREBIN paper [19]. Using DREBIN also enables us to evaluate the
effectiveness of our problem-space attack against a recently pro-
posed hardened variant, Sec-SVM [77]. Sec-SVM enforces more
evenly distributed feature weights, which require an attacker to
modify more features to evade detection.

We consider an attacker intending to evade detection based
on static analysis, without relying on code obfuscation as it may
increase suspiciousness of the apps [4, 293] (see Section 4.7).

4.4.2 Available Transformations

...using automated software trans-
plantation.

We use automated software transplantation [28] to extract slices of
bytecode (i. e., gadgets) from benign donor applications and inject
them into a malicious host, to mimic the appearance of benign apps
and induce the learning algorithm to misclassify the malicious host

50 machine learning for security in hostile environments

as benign.1 An advantage of this process is that we avoid relying on 1 Our approach is generic and it would
be immediate to do the opposite,
i. e., transplant malicious code into
a benign app. However, this would
require a dataset with annotated lines
of malicious code. For this practical
reason and for the sake of clarity of
this section, we consider only the
scenario of adding benign code parts
to a malicious app.

a hardcoded set of transformations [e.g., 231]; this ensures adapt-
ability across different application types and time periods. In this
work, we consider only addition of bytecode to the malware—which
ensures that we do not hinder the malicious functionality.

Organ Harvesting. In order to augment a malicious host with
a given benign feature Xi, we must first extract a bytecode gadget ρ

corresponding to Xi from some donor app. As we intend to pro-
duce realistic examples, we use program slicing [308] to extract a
functional set of statements that includes a reference to Xi. The fi-
nal gadget consists of the this target reference (entry point Lo), a for-
ward slice (organ o), and a backward slice (vein v). We first search A code gadget that will induce

benign features is extracted from a
donor app...

for Lo, corresponding to an appearance of code corresponding to
the desired feature in the donor. Then, to obtain o, we perform a
context-insensitive forward traversal over the donor’s System De-
pendency Graph (SDG), starting at the entry point, transitively
including all of the functions called by any function whose defi-
nition is reached. Finally, we extract v, containing all statements
needed to construct the parameters at the entry point. To do this,
we compute a backward slice by traversing the SDG in reverse.
Note that while there is only one organ, there are usually multiple
veins to choose from, but only one is necessary for the transplanta-
tion. When traversing the SDG, class definitions that will certainly
be already present in the host are excluded (e.g., system packages
such as android and java). For example, for an Activity feature
where the variable intent references the target Activity of interest,
we might extract the invocation startActivity(intent) (entry point
Lo), the class implementation of the Activity itself along with any
referenced classes (organ o), and all statements necessary to con-
struct intent with its parameters (vein v). There is a special case for
Activities which have no corresponding vein in the bytecode (e.g.,
a MainActivity or an Activity triggered by an intent filter declared
in the Manifest); here, we provide an adapted vein, a minimal Intent
creation and startActivity() call adapted from a previously mined
benign app that will trigger the Activity. Note that organs with
original veins are always prioritized above those without.

Organ Implantation. In order to implant some gadget ρ into
a host, it is necessary to identify an injection point LH where v
should be inserted. Implantation at LH should fulfill two criteria:
firstly, it should maintain the syntactic validity of the host; secondly,
it should be as unnoticeable as possible so as not to contribute to
any violation of plausibility. To maximize the probability of fulfill- ...and inconspicuously implanted

into the host app.ing the first criterion, we restrict LH to be between two statements
of a class definition in a non-system package. For the second crite-
rion, we take a heuristic approach by using Cyclomatic Complexity
(CC)—a software metric that quantifies the code complexity of com-
ponents within the host—and choosing LH such that we maintain
existing homogeneity of CC across all components. Finally, the host
entry point LH is inserted into a randomly chosen function among

realizable adversarial attacks in security 51

those of the selected class, to avoid creating a pattern that might be
identified by an analyst.

4.4.3 Preserved Semantics

We ensure the benign code cannot
disrupt malicious functionality at
runtime...

Given an application z and its modified (adversarial) version z′, we
aim to ensure that z and z′ lead to the same dynamic execution, i. e.,
the malicious behavior of the application is preserved. We enforce
this by construction by wrapping the newly injected execution
paths in conditional statements that always return False. This
guarantees the newly inserted code is never executed at runtime—
so users will not notice anything odd while using the modified app.
In Section 4.4.4, we describe how we generate such conditionals
without leaving artifacts.

To further preserve semantics, we also decide to omit intent-filter
elements as transplantation candidates. For example, an intent-filter

could declare the app as an eligible option for reading PDF files;
consequently, whenever attempting to open a PDF file, the user
would be able to choose the host app, which (if selected) would
trigger an Activity defined in the transplanted benign bytecode—
violating our constraint of preserving dynamic functionality.

4.4.4 Robustness to Preprocessing

Program analysis techniques that perform redundant code elimi-
nation would remove unreachable code. Our evasion attack relies
on features associated with the transplanted code, and to preserve
semantics we need conditional statements that always resolve to
False at runtime; so, we must subvert static analysis techniques
that may identify that this code is never executed. We achieve this
by relying on opaque predicates [202], i. e., carefully constructed ob-
fuscated conditions where the outcome is always known at design
time (in our case, False), but the actual truth value is difficult or
impossible to determine during a static analysis. ...and use opaque predicates to

ensure the injected code is not
easily detectable by static analysis.

To ensure the intractability of such an analysis, we follow the
work of Moser et al. [202] and build opaque predicates using a
formulation of the 3-SAT problem such that resolving the truth
value of the predicate is equivalent to solving the NP-complete
3-SAT problem.

The k-satisfiability (k-SAT) problem asks whether the variables
of a Boolean logic formula can be consistently replaced with True

or False in such a way that the entire formula evaluates to True; if
so the formula is satisfiable. Such a formula is easily expressed in its
conjunctive normal form:∧m

i=1(Vi1 ∨Vi2 ∨ ...∨Vik) ,

where Vij ∈ {v1, v2, ..., vn} are Boolean variables and k is the num-
ber of variables per clause.

52 machine learning for security in hostile environments

Listing 4.1: Example opaque predicate wrapping an adapted vein
that calls code with benign features. Java is shown for clarity, the
actual transplantation occurs with Dalvik bytecode. While ideal
Random k-SAT parameters are given here, actual values are synthe-
sized through JSketch with some variance to avoid fingerprints.

1 void opaque () {
2 Random random = new Random () ;
3 t h i s () ;
4 boolean [] arrayOfBoolean = new boolean [4 0] ;
5 byte b1 ;
6 f o r (b1 = 0 ; b1 < arrayOfBoolean . length ; b1++)
7 arrayOfBoolean [b1] = random . nextBoolean () ;
8 b1 = 1 ;
9 f o r (byte b2 = 0 ; b2 < 184 .0D; b2++) {

10 boolean bool = f a l s e ;
11 f o r (byte b = 0 ; b < 3 ; b++)
12 bool |= arrayOfBoolean [random . n e x t I n t (arrayOfBoolean . length)] ;
13 i f (! bool)
14 b1 = 0 ;
15 }
16 i f (b1 != 0) {
17 // Beginning of adapted vein
18 Context contex t = ((Context) t h i s) . getAppl icat ionContext () ;
19 I n t e n t i n t e n t = new I n t e n t () ;
20 t h i s (t h i s , h . a (t h i s , cxim . qngg . TEhr . sFiQa . c l a s s)) ;
21 i n t e n t . putExtra (" l " , h . p (t h i s)) ;
22 i n t e n t . addFlags (268435456) ;
23 s t a r t A c t i v i t y (i n t e n t) ;
24 h . x (t h i s) ;
25 re turn ;
26 // End of adapted vein
27 }
28 }

Importantly, when k = 3, formulas are only NP-Hard in the
worst case—30% of 3-SAT problems are in P [249]. This baseline
guarantee is not sufficient as our injected code should never exe-
cute. Additionally, we require a large number of random predicates
to reduce commonality between the synthetic portions of our gener-
ated examples.

To consistently generate NP-Hard k-SAT problems we use Ran-
dom k-SAT [249] in which there are 3 parameters: the number of
variables n, the number of clauses m, and the number of literals per
clause k. Our opaque predicates rely on the

hardness of 3-SAT...To construct a 3-SAT formula, m clauses of length 3 are gener-
ated by randomly choosing a set of 3 variables from the n available,
and negating each with probability 50%. An empirical study by
Selman et al. [249] showed that n should be at least 40 to ensure the
formulas are hard to resolve. Additionally, they show that formulas
with too few clauses are under-constrained while formulas with too
many clauses are over-constrained, both of which reduce the search
time. These experiments led to the following conjecture.

Threshold Conjecture [249]. Let us define c∗ as the threshold at
which 50% of the formulas are satisfiable. For m/n < c∗, as n → ∞,
the formula is satisfiable with probability 100%, and for m/n > c∗,
as n→ ∞, the formula is unsatisfiable with probability 100%.

The current state-of-the-art for c∗ is 3.42 < c∗ ≈ 4.3 < 4.51
for 3-SAT [249, 142, 197]. We use this conjecture to ensure that the

realizable adversarial attacks in security 53

formulas used for predicates are unsatisfiable with high probabil-
ity, i.e., that the predicate is likely a contradiction and will always
evalute to False. ...which our tests show will de-

feat analyses for stripping out
dead/redundant code...

Additionally we discard any generated formulas that fall into
two special cases of 3-SAT that are polynomially solvable:

• 2-SAT: The construction may be 2-SAT if it can be expressed as a
logically equivalent 2CNF formula [163].

• Horn-SAT: If at most one literal in a clause is positive, it is a
Horn clause. If all clauses are Horn clauses, the formula is Horn-
SAT and solvable in linear time [81].

We tested 100M Random 3-SAT trials using the fixed clause-
length model with parameters n ' 40, m ' 184, c∗ ' 4.6. All (100%)
of the generated constructions were unsatisfiable (and evaluated to
False at runtime) which aligns with the findings of Selman et al.
[249]. This probability is sufficient to prevent execution with near
certainty. ...and can be automatically syn-

thesized using JSketch [137], with
some variation to avoid artifacts.

To further reduce artifacts introduced by reusing the same
predicate, we use JSketch [137], a sketch-based program synthesis
tool, to randomly generate new predicates prior to injection with
some variation while maintaining the required properties. Post-
transplantation, we verify for each adversarial example that Soot’s
program optimizations have not been able to recognize and elimi-
nate them. An example of a generated opaque predicate (rendered
in equivalent Java rather than Dalvik bytecode) is shown in List-
ing 4.1.

4.4.5 Plausibility

In our model, an example is satisfactorily plausible if it resembles a
real, functioning Android application (i. e., is a valid member of the
problem-space Z). Our methodology aims to maximize the plau-
sibility of each generated object by injecting full slices of bytecode
from real benign applications. There is only one case in which we
inject artificial code: the opaque predicates that guard the entry
point of each gadget (see Listing 4.1 for an example). In general, we
can conclude that plausibility is guaranteed by construction thanks
to the use of automated software transplantation [28]. This con-
trasts with other approaches that inject standalone API calls and
URLs or no-op operations [e.g., 240] that are completely orphaned
and unsupported by the rest of the bytecode (e.g., an API call result
that is never used). Smoke tests ensure the app has

not been corrupted.We also practically assess that each mutated app still functions
properly after modification by installing and running it on an An-
droid emulator. Although we are unable to thoroughly explore
every path of the app in this automated manner, it suffices as a
smoke test to ensure that we have not fundamentally damaged the
structure of the app.

54 machine learning for security in hostile environments

Algorithm 1: Initialization Phase (Ice-Box Creation)
Input: Discriminant function h(x) = wT x + b, which classifies x as malware if h(x) > 0, otherwise as goodware.

Minimal app zmin ∈ Z with features ϕ(zmin) = xmin.
Parameters: Number of features to consider n f ; number of donors per-feature nd.
Output: Ice-box of harvested organs with feature vectors.

1 ice-box← {} Empty key-value dictionary.
2 L← List of pairs (wi , i), sorted by increasing value of wi .
3 L′ ← First n f elements of L, then remove any entry with wi ≥ 0.
4 for (wi , i) in L′ do
5 ice-box [i]← [] Empty list for gadgets with feature i.
6 while length(ice-box [i])< nd do
7 zj ← Randomly sample a benign app with feature xi = 1.
8 Extract gadget ρj ∈ Z with feature xi = 1 from zj.
9 s← Software stats of ρj

10 z′ ← Inject gadget ρj in app zmin.
11 (xmin ∨ ei ∨ ηj)← ϕ(z′) ei is a one-hot vector.
12 rj ← (ei ∨ ηj)← ϕ(z′) ∧ ¬xmin Gadget features obtained through set difference.
13 if h(rj) > 0 then
14 Discard the gadget;
15 else
16 Append (ρj, rj, s) to ice-box [i]. Store gadget
17 return ice-box;

4.4.6 Search Strategy

We propose a gradient-driven search strategy based on a greedy algo-
rithm, which aims to follow the gradient direction by transplanting
a gadget with benign features into the malicious host. There are
two main phases: Initialization (Ice-Box Creation) and Attack (Adver-
sarial Program Generation). Our attack uses a greedy

gradient-driven search strategy...Algorithm 1 and Algorithm 2 describe in detail the two main
phases of our search strategy: organ harvesting and adversarial
program generation. For the sake of simplicity, we describe a low-
confidence attack, i.e., the attack is considered successful as soon
as the classification score is below zero. It is immediate to consider
high-confidence variations (as we evaluate in Section 4.5).

Initialization Phase (Ice-Box Creation). We first harvest gadgets
from potential donors and collect them in an ice-box G, which is
used for transplantation at attack time. The main reason for this,
instead of looking for gadgets on-the-fly, is to have an immediate
estimate of the side-effect features when each gadget is considered for
transplantation. Looking for gadgets on-the-fly is possible, but may
lead to less optimal solutions and uncertain execution times. ...where a repository of gadgets

are first extracted from potential
donors and added to an ‘ice-box’.

For the initialization we aim to gather gadgets that move the
score of an object towards the benign class (i. e., negative score),
hence we consider the classifier’s top n f benign features (i. e., with
negative weight). For each of the top-n f features, we extract nd can-
didate gadgets, excluding those that lead to an overall positive (i. e.,
malicious) score. We recall that this may happen even for benign
features since the context extracted through forward and backward
slicing may contain many other features that are indicative of mali-
ciousness. We empirically verify that with n f = 500 and nd = 5 we

realizable adversarial attacks in security 55

are able to create a successfully evasive app for all the malware in
our experiments. It is important to observe that the ice-box can be
expanded over time, as long as the target classifier does not change
its weights significantly. Algorithm 1 reports the detailed steps of
the initialization phase.

To estimate the side-effect feature vectors for the gadgets, we
inject each into a minimal app zmin, i. e., an Android app we have
developed with minimal functionality. Note that when using zmin

to calculate the features that will be induced by a gadget, features
in the corresponding feature vector xmin should be noted and dealt
with accordingly (i.e., discounted). In our case xmin contained the
following three features:

{ "intents::android_intent_action_MAIN": 1,

"intents::android_intent_category_LAUNCHER": 1,

"activities::_MainActivity": 1 }

Attack Phase. We aim to automatically mutate z into z′ so that
it is misclassified as goodware, i. e., h(ϕ(z′)) < 0, by transplanting
harvested gadgets from the ice-box G. First we search for the list
of ice-box gadgets that should be injected into z. Each gadget ρj in
the ice-box G has feature vector rj which includes the desired fea-
ture and side-effect features. We consider the actual feature-space After determining the optimal fea-

tures to add, gadgets are injected
such that the impact of side-effect
features is minimized...

contribution of gadget i to the malicious host z with features x by
performing the set difference of the two binary vectors, rj ∧ ¬x.
We then sort the gadgets in order of decreasing negative contribu-
tion, which ideally leads to a faster convergence of z’s score to a
benign value. Next we filter this candidate list to include gadgets
only if they satisfy some practical feasibility criteria. We define a
check_feasibility function which implements some heuristics to limit
the excessive increase of certain statistics which would raise suspi-
ciousness of the app. Preliminary experiments revealed a tendency
to add too many permissions to the Android Manifest, hence, we
empirically enforce that candidate gadgets add no more than 1 new
permission to the host app. Moreover, we do not allow addition of
permissions listed as dangerous in the Android documentation [113].
The other app statistics remain reasonably within the distribution
of benign apps (more discussion in Section 4.5), and so we decide
not to enforce a limit on them. The remaining candidate gadgets ...subject to some heuristics to

ensure problem-space constraints
are not violated.

are iterated over and for each candidate ρj, we combine the gad-
get feature vector rj with the input malware feature vector x, such
that x′ = x ∨ rj. We repeat this procedure until the updated x′

is classified as goodware (for low-confidence attacks) or until an
attacker-defined confidence level is achieved (for high-confidence
attacks). Finally, we inject all the candidate gadgets at once through
automated software transplantation, and check that problem-space
constraints are verified and that the app is still classified as good-
ware. Algorithm 2 reports the detailed steps of the attack phase.
For the sake of simplicity, we describe a low-confidence attack, i.e.,
the attack is considered successful as soon as the classification score

56 machine learning for security in hostile environments

Algorithm 2: Attack Phase (Adv. Program Generation)
Input: Discriminant function h(x) = wT x + b, which classifies x as malware if h(x) > 0, otherwise as goodware.

Malware app z ∈ Z . Ice-box G.
Parameters: Problem-space constraints.
Output: Adversarial app z′ ∈ Z such that h(ϕ(z′)) < 0.

1 T ← Transplantation through gadget addition.
2 Υ← Smoke test through app installation and execution in emulator.
3 Π← Plausibility by-design through code consolidation.
4 Λ← Artifacts from last column of Table 4.1.
5 Γ← {T , Υ, Π, Λ}; sz ← Software stats of z; x← ϕ(z); L← [] Empty list.
6 T(z)← Empty sequence of problem-space transformations.
7 for (ρj, rj, s) in G do
8 dj ← rj ∧ ¬x Feature-space contribution of gadget j.
9 scorej ← h(dj) Impact on decision score.
10 Append the pair (scorej, i, j) to L Feature i, Gadget j.
11 L′ ← Sort L by increasing scorej Negative scores first.
12 for (scorej, i, j) in L′ do
13 if z has xi = 1 then
14 Do nothing; Feature i already present.
15 else if z has xi = 0 then
16 (ρj, rj, s)← element j in ice-box G
17 if check_feasibility(sz, s) is True then
18 x← (x ∨ ei ∨ ηj) Update features of z.
19 Append transplantation T ∈ T of gadget ρj in T(z).
20 if h(x) < 0 then
21 Exit from cycle; Attack gadgets found.
22 z′ ← Apply transformation sequence T(z) Inject chosen gadgets.
23 if h(ϕ(z′)) < 0 and T(z) |= Γ then
24 return z’; Attack successful.
25 return Failure;

is below zero. It is immediate to consider high-confidence varia-
tions (as we evaluate in Section 4.5).

4.5 Experimental Evaluation

We evaluate the effectiveness of our novel problem-space Android
attack, in terms of success rate and required time—and also when
in the presence of feature-space defenses.

4.5.1 Experimental Settings

Prototype. We create a prototype of our novel problem-space attack
(Section 4.4) using a combination of Python for the ML functional-
ity and Java for the program analysis operations; in particular, to
perform transplantations in the problem-space we rely on Flow-
Droid [21], which is based on Soot [295]. We release the code of our
prototype to other academic researchers (see front matter). We ran
all experiments on an Ubuntu VM with 48 vCPUs, 290GB of RAM,
and NVIDIA Tesla K40 GPU.

Classifiers. As defined in the threat model (Section 4.4.1), we
consider the DREBIN classifier [19], based on a binary feature space
and a linear SVM, and its recently proposed hardened variant, Sec-

realizable adversarial attacks in security 57

SVM [77], which requires the attacker to modify more features to
perform an evasion.

We have access to a working Python implementation of DREBIN
based on sklearn, androguard, and aapt, and we rely on LinearSVC
classifier with C=1 as in Arp et al. [19]. We test our attack against

an SVM-based detector,
DREBIN [19]...

To have have full control of the training procedure, we approx-
imate the linear SVM as a single-layer neural network (NN) using
PyTorch [218]. We recall that the main intuition behind Sec-SVM is
that classifier weights are distributed more evenly in order to force
an attacker to modify more features to evade detection. Hence, we
modify the training procedure so that the Sec-SVM weights are
bounded by a maximum weight value k at each training optimization
step. Similarly to Demontis et al. [77], we perform feature selection
for computational efficiency, since PyTorch does not support sparse
vectors. We use an l2 (Ridge) regularizer to select the top 10,000

with negligible reduction in AUROC. This performance retention
follows from recent results that shows SVM tends to overempha-
size a subset of features [191]. To train the Sec-SVM, we perform
an extensive hyperparameter grid-search: with Adam [152] and
Stochastic Gradient Descent (SGD) optimizers; training epochs of 5

to 100; batch sizes from 20 to 212; learning rate from 100 to 10−5. We
identify the best single-layer NN configuration for our training data
to have the following parameters: SGD, batch size 1024, learning
rate 10−4, and 75 training epochs. We then perform a grid-search of
the Sec-SVM hyperparameter k (i.e., the maximum weight absolute
value [77]) by clipping weights during training iterations. We start
from k = wmax, where wmax = maxi(wi) for all features i; we then
continue reducing k until we reach a weight distribution similar to
that reported in [77], while allowing a maximum performance loss
of 2% in AUROC. In this way, we identify the best value for our
setting as k = 0.2. ...and its hardened variant, Sec-

SVM [77].Figure 4.2 reports the AUROC for the DREBIN classifier [19]
in SVM and Sec-SVM modes. The SVM mode has been evaluated
using the LinearSVC class of scikit-learn [221] that utilizes the LI-
BLINEAR library [91]; as in the DREBIN paper [19], we use hy-
perparameter C=1. The performance degradation of the Sec-SVM
compared to the baseline SVM shown in Figure 4.2 is in part re-
lated to the defense itself (as detailed in [77]), and in part due to
minor convergence issues (since our single-layer NN converges less
effectively than the LIBLINEAR implementation of scikit-learn).
We have verified with Demontis et al. [77] the correctness of our
Sec-SVM implementation and its performance, for the analysis
performed in this work.

Attack Confidence. We consider two attack settings: low-confidence
(L) and high-confidence (H). The (L) attack merely overcomes the de-
cision boundary (so that h(x) < 0). The (H) attack maximizes the
distance from the hyperplane into the goodware region; while gen-
erally this distance is unconstrained, here we set it to be ≤ the neg-
ative scores of 25% of the benign apps (i. e., within their interquar-

58 machine learning for security in hostile environments

0 25 50 75 100
False Positive Rate (%)

0

20

40

60

80

100

T
ru

e
P

os
it

iv
e

R
at

e
(%

)

SVM

Sec-SVM

(a) ROC

0 2 4 6 8 10
False Positive Rate (%)

86

88

90

92

94

96

98

100

T
ru

e
P

os
it

iv
e

R
at

e
(%

)

SVM

Sec-SVM

(b) ROC (Zoom)

Figure 4.2: Performance of
SVM and Sec-SVM in absence
of adversarial attacks.

tile range). This avoids making superfluous modifications, which
may only increase suspiciousness or the chance of transplantation
errors, while being closer in nature to past mimicry attacks [37].

We use a dataset of 152,632 good-
ware and 17,625 malware from
the Androzoo repository [8]...

Dataset. We collect apps from AndroZoo [8], a large-scale
dataset with timestamped Android apps crawled from different
stores, and with VirusTotal summary reports. We use the labeling
criteria of Miller et al. [194]: an app is considered goodware if it has
0 VirusTotal detections, as malware if it has 4+ VirusTotal detections,
and is discarded as grayware if it has between 1 and 3 VirusTotal
detections. To ensure spatial bias does not affect the evaluation
we use an average of 10% malware (see Section 5.3.3). The final
dataset contains ~170K recent Android applications, dated between
Jan 2017 and Dec 2018, specifically 152,632 goodware and 17,625

malware.

...with a random training-test
split of 2:1 to ensure greater
concept drift does not affect the
measurement.

Dataset Split. In Chapter 5 (previously published as Pendlebury
et al. [223]) we demonstrate that in non-stationary contexts such
as Android malware, if time-aware splits are not considered, then
the results may be inflated due to concept drift (i. e., changes in the
data distribution). However, here we aim to specifically evaluate the
effectiveness of a single adversarial attack. If we were to perform
a time-aware split, it would be impossible to determine whether
the success rate of our ML-driven adversarial attack was due to
an intrinsic weakness of the classifier or due to wider evolution of
malware (i. e., the introduction of new non-ML techniques malware
developers rely on to evade detection). Hence, we perform a random
split of the dataset to simulate an absence of concept drift [223]; this
also represents the most challenging scenario for an attacker, as
they aim to mutate a test object coming from the same distribution
as the training dataset (on which the classifier likely has higher
confidence). In particular, we consider a 66% training and 34%
testing random split.2 2 We consider only one split due

to the overall time required to run
the experiments. Including some
prototype overhead, it requires about
one month to run all configurations.

Testing. The test set contains a total of 5,952 malware. The statis-
tics reported in the remainder of this section refer only to true posi-
tive malware (5,330 for SVM and 4,108 for Sec-SVM), i. e., we create
adversarial variants only if the app is detected as malware by the
classifier under evaluation. Intuitively, it is not necessary to make
an adversarial example of a malware application that is already
misclassified as goodware; hence, we avoid inflating results by

realizable adversarial attacks in security 59

0 50 100 150 200
Number of Added Features

0.00

0.25

0.50

0.75

1.00
S

u
cc

es
sf

u
l

E
va

si
ve

A
p

p
s

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

Figure 4.3: Cumulative dis-
tribution of features added to
adversarial malware (out of a
total 10,000 features remaining
after feature selection).

removing false negative objects from the dataset. During the trans-
plantation phase of our problem-space attack some errors occur due
to bugs and corner-case errors in the FlowDroid framework [21].

Our results focus on the ~4–5K
true positives (model dependent),
omitting failed transformations
caused by third-party tooling...

We performed extensive troubleshooting of FlowDroid [21] to
reduce the number of transplantation failures, and the transplan-
tations without FlowDroid errors in the different configurations
are as follows: 89.5% for SVM (L), 85% for SVM (H), 80.4% for
Sec-SVM (L), 73.3% for Sec-SVM (H). Some examples of the errors
encountered include: inability to output large APKs when the app’s
SDK version is less than 21; a bug triggered in AXmlWriter, the
third party component used by FlowDroid, when modifying app
Manifests; and FlowDroid injecting system libraries found on the
classpath when they should be excluded.

Since these errors are related to implementation limitations of
the FlowDroid research prototype, and not conceptual errors, the
success rates in the remainder of this section refer only to applica-
tions that did not throw FlowDroid exceptions during the trans-
plantation phase.

4.5.2 Evaluation

We analyze the performance of our Android problem-space attack
in terms of runtime cost and successful evasion rate. An attack
is successful if an app z, originally classified as malware, is mu-
tated into an app z′ that is classified as goodware and satisfies the
problem-space constraints.

...of which 100% can be made
adversarial without violating
problem-space constraints...

Figure 4.2 reports the AUROC of SVM and Sec-SVM on the
DREBIN feature space in absence of attacks. As expected [77], Sec-
SVM sacrifices some detection performance in return for greater
feature-space adversarial robustness.

Attack Success Rate. We perform our attack using true positive
malware from the test set, i. e., all malware objects correctly clas-
sified as malware. We consider four settings depending on the
defense algorithm and the attack confidence: SVM (L), SVM (H),
Sec-SVM (L), and Sec-SVM (H). In absence of FlowDroid exceptions
(see Section 4.5.1), we are able to create an evasive variant for each
malware in all four configurations. In other words, we achieve a
misclassification rate of 100.0% on the successfully generated apps,

60 machine learning for security in hostile environments

0 25 50 75 100 125
Application Size [MB]

0.00

0.25

0.50

0.75

1.00
Su

cc
es

sf
ul

E
va

si
ve

A
pp

s
[%

]

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

0 25 50 75 100 125
Application Size [MB]

0.00

0.25

0.50

0.75

1.00
Su

cc
es

sf
ul

E
va

si
ve

A
pp

s
[%

]

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

(a) Size

0 50 100 150 200
Avg. Cyclomatic Complexity

0.00

0.25

0.50

0.75

1.00

Su
cc

es
sf

ul
E

va
si

ve
A

pp
s

[%
]

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

0 50 100 150 200
Avg. Cyclomatic Complexity

0.00

0.25

0.50

0.75

1.00

Su
cc

es
sf

ul
E

va
si

ve
A

pp
s

[%
]

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

0 50 100 150 200
Avg. Cyclomatic Complexity

0.00

0.25

0.50

0.75

1.00

Su
cc

es
sf

ul
E

va
si

ve
A

pp
s

[%
]

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

0 50 100 150 200
Avg. Cyclomatic Complexity

0.00

0.25

0.50

0.75

1.00

Su
cc

es
sf

ul
E

va
si

ve
A

pp
s

[%
]

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

0 50 100 150 200
Avg. Cyclomatic Complexity

0.00

0.25

0.50

0.75

1.00

Su
cc

es
sf

ul
E

va
si

ve
A

pp
s

[%
]

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

0 50 100 150 200
Avg. Cyclomatic Complexity

0.00

0.25

0.50

0.75

1.00

Su
cc

es
sf

ul
E

va
si

ve
A

pp
s

[%
]

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

0 50 100 150 200
Avg. Cyclomatic Complexity

0.00

0.25

0.50

0.75

1.00

Su
cc

es
sf

ul
E

va
si

ve
A

pp
s

[%
]

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

0 50 100 150 200
Avg. Cyclomatic Complexity

0.00

0.25

0.50

0.75

1.00

Su
cc

es
sf

ul
E

va
si

ve
A

pp
s

[%
]

SVM (L)

SVM (H)

Sec-SVM (L)

Sec-SVM (H)

(b) Avg. CC

0 100 200 300
Number of Permissions

0.00

0.25

0.50

0.75

1.00

S
u

cc
es

sf
u

l
E

va
si

ve
A

p
p

s

(c) Permissions

0 20 40 60 80
Number of API Calls

0.00

0.25

0.50

0.75

1.00

S
u

cc
es

sf
u

l
E

va
si

ve
A

p
p

s

(d) API calls

0 200 400 600 800
Number of URLs

0.00

0.25

0.50

0.75

1.00

S
u

cc
es

sf
u

l
E

va
si

ve
A

p
p

s

(e) URLs

0 100 200 300 400
Number of Activities

0.00

0.25

0.50

0.75

1.00

S
u

cc
es

sf
u

l
E

va
si

ve
A

p
p

s

(f) Activities

0 50 100 150 200
Number of Services and Receivers

0.00

0.25

0.50

0.75

1.00

S
u

cc
es

sf
u

l
E

va
si

ve
A

p
p

s

(g) Services and Receivers

0 20 40 60 80
Number of Intents

0.00

0.25

0.50

0.75

1.00

S
u

cc
es

sf
u

l
E

va
si

ve
A

p
p

s

(h) Intents

0 20 40 60
Number of Content Providers

0.00

0.25

0.50

0.75

1.00

S
u

cc
es

sf
u

l
E

va
si

ve
A

p
p

s

(i) Content Providers

Figure 4.4: Statistics of the
evasive malware variants. The
dark gray area highlights the
interquartile range for benign
apps; the light gray area is
based on the 3σ rule and high-
lights the range between 0.15%
and 99.85% of the benign dis-
tribution, showing the new
apps are reasonably plausible.

where the problem-space constraints are satisfied by construction
(as defined in Section 4.4). Figure 4.3 reports the cumulative dis-
tribution of features added when generating evasive apps for the
four different configurations. As expected, Sec-SVM requires the
attacker to modify more features, but here we are no longer inter-
ested in the feature-space properties, since we are performing a
problem-space attack. This demonstrates that measuring attacker
effort with Lp perturbations as in the original Sec-SVM evalua-
tion [77] overestimates the robustness of the defense and is better
assessed using our framework (Section 4.3).

While the plausibility problem-space constraint is satisfied by
design by transplanting only realistic existing code, it is informative
to analyze how the statistics of the evasive malware relate to the
corresponding distributions in benign apps. Figure 4.4 reports the
cumulative distribution of app statistics across the four settings: the
X-axis reports the statistics values, whereas the Y-axis reports the
cumulative percentage of evasive malware apps. We also shade two
gray areas: a dark gray area between the first quartile q1 and third
quartile q3 of the statistics for the benign applications; the light gray
area refers to the 3σ rule and reports the area within the 0.15% and
99.85% of the benign apps distribution.

...demonstrating that Lp con-
straints overestimate robustness
in this setting.

Figure 4.4 shows that while evading Sec-SVM tends to cause a
shift towards the higher percentiles of each statistic, the vast ma-
jority of apps fall within the gray regions in all configurations. We

realizable adversarial attacks in security 61

note that this is just a qualitative analysis to verify that the statistics
of the evasive apps roughly align with those of benign apps; it is
not sufficient to have an anomaly in one of these statistics to deter-
mine that an app is malicious (otherwise, very trivial rules could
be used for malware detection itself, and this is not the case). We
also observe that there is little difference between the statistics gen-
erated by Sec-SVM and by traditional SVM; this means that greater
feature-space perturbations do not necessarily correspond to greater
perturbations in the problem-space, reinforcing the feasibility and
practicality of evading Sec-SVM.

Our attack is a scalable and prac-
tical threat with an average run-
time under 2 minutes.

Runtime Overhead. The time to perform the search strategy
occurring in the feature space is almost negligible; the most de-
manding operation is in the actual code modification. Figure 4.5
depicts the distribution of injection times for our test set malware
which is the most expensive operation in our approach while the
rest is mostly pipeline overhead. The time spent per app is low:
in most cases, less than 100 seconds, and always less than 2,000

seconds (~33 mins). The low runtime cost suggests that it is feasi-
ble to perform this attack at scale and reinforces the need for new
defenses in this domain.

101

102

103

L L HH

In
je

ct
io

n
T

im
e

(s
)

SVM Sec-SVM

Figure 4.5: Injection times per
adversarial app.

4.6 Realizable Universal Adversarial Perturbations

UAPs are perturbations that are
universally effective across many
inputs...

The ability to generate realizable problem-space malware opens
up classes of attacks beyond input-specific evasion. Universal Ad-
versarial Perturbations (UAPs) are a class of perturbations where
a single perturbation applied to a large set of inputs produces er-
rors for a large fraction of these inputs [198]. UAPs reveal systemic
vulnerabilities in the target models and represent a significant risk,
as they reduce the effort for the attacker to create adversarial ex-
amples. Successful UAPs have been generated for computer vision
and object detection [43, 268, 89, 177], perceptual ad-blocking [291],
and LiDAR-based object detection [48, 292]. However so far there
has been little no exploration of problem-space UAP attacks against
machine learning malware classifiers.

...particularly alluring to profit-
motivated attackers as they can
be generated once and reused
multiple times.

In malware development, we can envision a profit-motivated
adversary such as a Malware-as-a-Service (MaaS) provider [146,
165, 306] with two objectives:

O1. They aim to maximize the amount of malware that can be made
undetectable, increasing revenue.

O2. They aim to minimize the cost of making a single malware
undetectable, reducing expenditure.

From these objectives it is clear why UAPs are a natural choice of
attack strategy: UAPs are scalable, amortizing the cost of generating
a perturbation over the total number of evasive malware that it
produces. Additionally, in the preceding sections we have proposed

62 machine learning for security in hostile environments

and evaluated a scalable input-specific problem-space attack with
properties aligned with these objectives. Here we see if the same
methodology can be adapted to produce effective realizable UAPs.

4.6.1 Feature-Space UAPs for Malware

First we present a motivational experiment to demonstrate that
malware classifiers are vulnerable to UAPs crafted in the feature
space—that is, without considering the set of problem-space con-
straints which restrict how the attacker can mutate an input object.

UAP SVM
UAP DNN

Specific SVM
Specific DNN

100

80

60

30

20

0 5 10 15 20

C
la

ss
ifi

ca
tio

n
Er

ro
r

(%
)

L0 Norm

Figure 4.6: Input-specific vs.
UAP perfect knowledge at-
tacks against SVM and DNN
in the feature space.

Feature-space attacks may be unrealistic from a practical per-
spective, but their existence is a necessary condition for the exis-
tence of problem-space attacks (see Theorem 1).

Returning to the Android dataset described in Section 4.5.1, we
create a random split with 60% of examples used for training and
40% for testing.

We again target the Drebin SVM [19] as well as a Deep Neural
Network (DNN).3 The DNN has the architecture 5, 000× 1, 024× 3 We introduce a DNN baseline here

as later we will try and to generate a
more robust variant through adversar-
ial training.

512× 1, and uses Leaky ReLU activation functions for the hidden
layers (with negative slope equal to 0.1) and a sigmoid activation
function for the output layer. We include Dropout at 0.1 to reduce
overfitting and use the Adam optimizer [152] with learning rate
equal to 10−3.

We assess the robustness of the SVM and the DNN classifiers
against input-specific and UAP attacks under perfect knowledge
settings. Against the SVM we select the features with the most
negative weights, i. e., we select the top-L0 features that are most
indicative of goodware. For the UAP attack we take into account
the contribution across all inputs. We assess the robustness of SVM-

and DNN-based malware detec-
tors...

Against the DNN we apply the attack proposed by Grosse et al.
[119] (derived from Papernot et al. [213]), which relies on the re-
cursive computation of the Jacobian, searching at each step for the
feature that maximizes the change in output in the desired direction
(i. e., towards evasion). For the UAP attack we propose a method
where we select the most salient features computed by the Jaco-
bian averaged over the malware examples in the test set. Given the
binary feature space, we define the attacker’s feature-space con-
straints in terms of the L0-norm, i.e., the number of features that the
attacker can modify, exploring values from L0 = 1 to 20 and that
the attacker can only add features, in order to preserve malicious
semantics, i. e., the attacker can only change features from 0 to 1

but not from 1 to 0. For the UAP attack, the effective change in the
number of features that are set to 1 after the attack is at most L0 for
each input, i. e., some of the features for these inputs may already
be set to 1, and thus, the UAP does not change their value.

To quantify the success of the UAPs, we use the Universal Evasion
Rate (UER) to measure the universality of each perturbation. UER is

realizable adversarial attacks in security 63

computed over a set of inputs X and defined as:

UER =
|{x ∈ X : arg max g(x + δ) 6= y ∈ Y}|

|X | . (4.15)

That is, UER denotes the fraction of inputs in X for which the
classifier outputs an error when the UAP δ is applied. ...showing that both are weak

against feature-space UAP at-
tacks...

Figure 4.6 reports the classification error of the adversarial mal-
ware at different attack strengths (including when the malware is
not manipulated, i. e., L0 = 0)—this is UER for the UAPs and sim-
ply the evasion rate for input-specific attacks. We observe that for
L0 = 20, the effectiveness of both UAP and input-specific attacks
is above 95% in all cases, and in some cases achieves effectiveness
close or equal to 100%.

Most importantly, we observe that the effectiveness of the UAP
attacks is comparable to those of the input-specific attacks, espe-
cially for the SVM, where the results are almost identical.

For unprotected models, the extra capacity of the DNN com-
pared to the linear classifier provides only marginal improvements
in robustness that are not relevant from a practical perspective.
Most importantly, our results show the importance of UAP attacks
against malware classifiers: they achieve comparable effectiveness
compared to their input-specific counterparts, but pose a signif-
icantly higher risk, as the same perturbation generalizes across
many malware examples. ...justifying an exploration of

whether problem-space UAP
attacks are possible.

These results justify the attack methodology considered in the
following sections, where we show it is also possible to generate
very effective UAP attacks in the problem space, which pose a
significant and real threat.

4.6.2 Problem-Space UAPs for Malware

Motivated by the results of feature-space UAP attacks in Sec-
tion 4.6.1, here we show the feasibility of generating problem-space
UAPs to realize real-world evasive malware.

By adapting our previous attack to
maximize UER...

Target Model. We target the Drebin SVM, using a random strat-
ified split with 33% hold out for testing, partitioning the dataset
into 101,596 and 50,041 examples for training and test, respectively.
As before we avoid splitting the dataset temporally in order to
evaluate the attacks in the absence of concept drift, to not overesti-
mate the UAP success rate. We want to simulate a MaaS scenario in
which an adversary is interested in reusing UAPs on future exam-
ples which they may not yet have access to. Therefore to ensure the
UAPs do not overfit to the training set and will transfer to new mal-
ware examples, we set aside 10% (10,160) of the training set as the
exploration set for the UAP search. As the final test set, we consider
all true positive malware examples detected by the trained classifier
(4,503 examples). On the non-adversarial (clean) test data the model
achieves an AUC-ROC of 0.981 and 0.855 TPR at 1% FPR.

64 machine learning for security in hostile environments

Activity API Call API Perm. App Perm. Intent Interesting S + R URL

Feature type

0.00

0.25

0.50

0.75

1.00
In

ci
de

nc
e

Figure 4.7: Relative incidence
of feature perturbations,
grouped by type, induced by
the most effective individual
transformations (UER ≥ 90%).

Available Transformations. We apply our attack as before,
extracting 1,395 problem-space gadgets, based on features con-
sidered important with respect to benign examples in our ex-
ploration set, to obtain the final set of available transformations
T = { t0, . . . , t1394 }, where ti denotes the injection of gadget i into
a given malware. Note that none of the transformations are capable
of removal, only addition (i. e., setting a feature value to 1). ...we can discover strong UAP-

based attacks in the problem-
space.

UAP Search. As before, gadgets are selected greedily based on
their total benign contribution (i. e., considering side effects) and
added until the decision score of the host malware is sufficiently
benign. However, here we alter the search strategy to consider the
UER across all true positive malware examples. We iteratively ap-
ply all possible transformations, at each step selecting the one max-
imizing UER across all true positive malware in the exploration set,
until either the maximum length for the transformation sequence T
is reached, 100% UER is reached, or no remaining transformations
can increase UER. We consider a maximum sequence length of ten.

Results. The attack is very successful, with the strongest UAP
discovered using the exploration set producing 4,413 evasive vari-
ants on the test set after a single transformation (98% UER) and
achieving 100% UER after two transformations.

L 0
 P

er
tu

rb
at

io
n

50

40

30

20

10

0

Figure 4.8: Distribution of L0

norm perturbations (i. e., num-
ber of binary features added)
induced by the most effective
individual transformations
(UER ≥ 90%).

Perturbation Analysis. We can now use the UAPs to better un-
derstand the weaknesses of the classifier by examining the nature
of the feature-space perturbations induced by these strong trans-
formations. Figure 4.7 shows the relative incidence of features,
grouped by feature type, across the highly effective transformations
(i. e., with UER ≥ 90%). The most common feature types perturbed
by the UAPs are related to API calls, with API calls perturbed by
all transformations, API-related permissions perturbed by half,
and a special category of “interesting” API calls being the third
most common. However, the individual features which occur con-
sistently across all of the top transformations are Activities, such as
activities::CloudAndWifiBaseActivity (which is present in all
but two of these transformations).

Although we reiterate that Lp norm constraints on the perturba-
tion are not appropriate for problem-space attacks as the object can
be modified arbitrarily so long as the problem-space constraints are
not violated, it is still worth examining the size of the L0 distortion
induced by each transformation given how strong they appear to be
individually.

Figure 4.8 shows the distribution of L0 perturbation sizes, with a

realizable adversarial attacks in security 65

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

U
E

R
 (%

)
Chains Median 95% confidence interval

Figure 4.9: Limited knowledge
attack against Drebin. UER
for 1000 random transforma-
tion chains up to length 10.
Relatively few transforma-
tions are required to achieve a
high UER, highlighted by the
median at each stage.

mean and median of 18.5 and 19, respectively. To provide perspec-
tive, the L0 perturbation induced by the strongest transformation
chain is 19; the mean and median L0 norms of the overall dataset
are 50 and 49, respectively. We observe that the Android

setting is particularly weak to
strong problem-space attacks...

We observe that the Android domain appears naturally amenable
to powerful attacks. The attacker is able to directly manipulate
the bytecode, with established program analysis tools such as
Soot [295] and FlowDroid [21] making specific alterations rela-
tively accessible. Additionally, it is possible to choose gadgets from
the ice-box such that the UER is monotonic with respect to gadget
injection—where there is no risk of a transformation reducing the
evasiveness of the transformation chain.

4.6.3 Limited Knowledge Setting

Having demonstrated the feasibility of problem-space UAPs in
the perfect knowledge setting, here we look to see how effective
UAPs might be in a setting where the attacker has only limited
knowledge. ...and even limited knowledge

attacks with random search can be
successful.

Figure 4.9 shows the results from a naïve limited knowledge
attack against the Android classifier, in which T is constructed by
selecting gadgets at random. Each line depicts the UER produced
by one of 1,000 transformation chains, tested at each stage of con-
struction. The attack still appears to be extremely potent, with
chains at length 5 achieving a median UER above 90%.

4.6.4 Improving Robustness to UAPs

A promising mitigation against adversarial examples is robust
training [179, 58, 59], and in particular adversarial training [112, 181,
159]: the introduction of evasive examples into the training pro-
cess to adjust the decision boundary to cover pockets of adversarial
space close to legitimate examples. However, uniformly apply-

66 machine learning for security in hostile environments

1 2 3 4 5 6 7 8 9 10

Length of transformation chain

0

10

20

30

40

50

60

70

80

90

100

U
E

R
 (%

)
DREBIN-DNN
DREBIN-DNN L0 = 20 Pure
DREBIN-DNN L0 = 40 Pure

DREBIN-DNN L0 = 20 Mixed
DREBIN-DNN L0 = 40 Mixed
DREBIN-DNN Iter N = 1

DREBIN-DNN Iter N = 3
DREBIN-DNN Iter N = 5

Figure 4.10: Adaptive attacks
against hardened Drebin-DNN
classifiers showing increasing
UER at each stage of the trans-
formation chain. Correspond-
ing performance on clean data
is shown in Table 4.2.

ing adversarial training to all regions close to the decision bound-
ary can greatly alter the classifier, such that performance suffers
on goodware or previously detected malware. Moreover, effort is
wasted securing regions of the feature space which do not intersect
with the feasible problem-space region of realizable attacks.

We hypothesize that an adver-
sarial training variant based on
problem-space UAPs...

Our UAPs show that the classifier has specific weaknesses
against certain feature types (e.g., API calls), so we posit that rather
than applying adversarial training indiscriminately, we can instead
use our UAPs to ‘patch’ the model against the specific toolkit of
available transformations (here our ice-box). This would signifi-
cantly raise the bar for attackers, forcing them to obtain a new set
of transformations which may not even be possible.

Our process can be broadly defined as follows. i) Generate
problem-space UAPs using a greedy search on the exploration set
to calculate the strongest transformation chain, using the toolkit
of available transformations, to quantify the model’s initial robust-
ness. ii) Adversarially train the model, by fine-tuning the model on
newly generated UAPs as an additional step of the training pro-
cess. iii) Evaluate the robust models considering an adaptive attacker,
by performing a fresh search for UAP attacks. We focus on the ef-
fectiveness of the UAP attack in terms of UER, and the performance
loss incurred on clean data in terms of AUC, and TPR at a fixed
FPR of 1%.

...will be able to ‘patch’ the model
against the attacker’s set of avail-
able transformations.

Models. We hypothesize that the Drebin model will not be re-
ceptive to adversarial training, as the linear hyperplane will not be
flexible enough to adapt to the adversarial inputs, i. e., it will begin
to ‘forget’ patterns of adversarial inputs seen earlier in the training
process. To test this, we additionally apply our defense to the non-
linear DNN originally described in Section 4.6.1 which we hereby
refer to as Drebin-DNN.

During each of the the last N epochs of the training procedure,
at the start of each minibatch, we apply our attack procedure to
the partially trained model and search for the most effective UAP
transformation sequence, i. e., the UAP that maximizes UER across

realizable adversarial attacks in security 67

Model AUC-ROC TPR at 1% FPR UER1 UER4 UER10

Undefended
Drebin 0.981 0.855 98.7% 100% 100%
Drebin-DNN 0.992 0.900 78.8% 97.3% 99.5%

Feature-space defenses

Drebin-DNN L0 = 20 Pure 0.989 0.843 27.6% 85.1% 96.1%
Drebin-DNN L0 = 40 Pure 0.903 0.347 3.6% 3.6% 3.6%
Drebin-DNN L0 = 20 Mixed 0.990 0.872 46.9% 75.3% 89.2%
Drebin-DNN L0 = 40 Mixed 0.990 0.877 18.4% 38.0% 66.6%

Problem-space defenses

Drebin Iter N = 1 0.978 0.775 23.0% 70.4% 95.7%
Drebin Iter N = 3 0.978 0.766 21.0% 47.0% 87.0%
Drebin Iter N = 5 0.978 0.761 17.4% 35.1% 82.6%

Drebin-DNN Iter N = 1 0.990 0.874 5.3% 17.9% 53.5%
Drebin-DNN Iter N = 3 0.990 0.871 1.6% 7.7% 19.7%
Drebin-DNN Iter N = 5 0.990 0.872 1.7% 9.3% 20.4%

Table 4.2: Comparison of
problem-space vs. feature-
space defenses, showing per-
formance on clean examples
(AUC-ROC, TPR) and ro-
bustness against an adaptive
attacker (UER at |T| of 1, 4,
and 10).

all true positive examples in the minibatch. For our problem-space
defense, we fine-tune on the problem-space UAPs for the last N =

1, 3, and 5 epochs of training.
Baselines. As a baseline, we repeat the perfect knowledge

problem-space attack against Drebin and Drebin-DNN (Table 4.2).
For Drebin-DNN we also compare against a number of defenses
obtained by generating adversarial examples in the feature space
instead of the problem space. These defenses take two parameters:
the L0 constraint on the perturbation size and the percentage of
adversarial examples to include during the adversarial training pro-
cedure. The second parameter is to prevent TPR from degrading
from the model losing the ability to identify clean malware by be-
ing fine-tuned on adversarial examples alone. For the L0 constraints
we consider 20 and 40, and for the percentage of adversarial exam-
ples we consider a pure setting (100%) and a mixed setting where
clean and adversarial malware examples are interleaved (50%). The results confirm our defense

is effective, producing a more fo-
cused adversarial training with a
greater trade-off between robust-
ness and clean-data accuracy.

Results. In Table 4.2 we report the UER of the adaptive white
box attacks against each defense (also depicted in Figure 4.10).
The close results for N = 3 and N = 5 appear to show an upper
bound in the robustness gained, so it is likely that further epochs
will result in diminishing returns. The results also confirm our
hypothesis that the linear model is not as amenable to adversarial
training as the nonlinear model. The linear Drebin model shows
a larger performance loss on the clean examples compared to the
other models (except for L0 = 40 Pure), and while the robustness is
improved for small sequences, UER for the sequences of length 10

is > 80%.
Overall, the defense that provides the largest improvement in ro-

bustness is L0 = 40 Pure, which is the most aggressive feature-space
defense we consider, however it comes at a significant performance
cost on non-adversarial examples. L0 = 40 Mixed offers a bet-
ter trade-off with a fairly large increase in robustness without the
performance loss. The other feature-space defenses retain their
performance on the non-adversarial examples, but do not show a
significant gain in robustness.

However, our approach demonstrates an even more advanta-

68 machine learning for security in hostile environments

geous trade-off than L0 = 40 Mixed, with a similarly small per-
formance loss on clean data, but far greater gains in robustness,
reducing the maximum UER of length 10 chains from 99.5% to
~20%. This supports our hypothesis that integrating problem-space
knowledge into the adversarial training process can result in a more
focused and effective defense that specifically ‘patches’ vulnerabili-
ties of interest.

4.7 Discussion on Attacks and Results

We provide some deeper discussion on the results of our novel
problem-space attack. We conclude that evasion of

Android malware detectors is
practically feasible...

Android Attack Effectiveness. We conclude that it is practically
feasible to evade the Android malware classifier DREBIN [19] and
its hardened variant, Sec-SVM [77], and that we are able to auto-
matically generate realistic and inconspicuous evasive adversarial
applications, often in less than 2 minutes. This shows for the first
time that it is possible to create realistic adversarial applications
at scale. Additionally the attack can be adapted to generate UAPs,
scalable adversarial perturbations that transfer across many inputs,
suitable for the MaaS threat model.

Obfuscation. It could be argued that traditional obfuscation
methods can be used to simply hide malicious functionality. The
novel problem-space attack in this work evaluates the feasibility of
an “adversarial-malware as a service” scenario, where the use of
mass obfuscation may raise the suspicions of the defender; for ex-
ample, antivirus companies often classify samples as malicious sim-
ply because they utilize obfuscation or packing [4, 293]. Moreover,
some other analysis methods combine static and dynamic analysis
to prioritize evaluation of code areas that are likely obfuscated [e.g.,
168]. On the contrary, our transformations aim to be fully incon- ...and can be complemented by

traditional obfuscation techniques.spicuous by adding only legitimate benign code and, to the best of
our knowledge, we do not leave any relevant artifact in the process.
While the effect on problem-space constraints may differ depending
on the setting, attack methodologies such as ours and traditional
obfuscation techniques naturally complement each other in aiding
evasion and, in the program domain, code transplantation may be
seen as a tool for developing new forms of inconspicuous obfusca-
tion [92].

Defense Directions Against Our Attacks. A recent promising
direction by Incer et al. [133] studies the use of monotonic classifiers,
where adding features can only increase the decision score (i. e.,
an attacker cannot rely on adding more features to evade detec-
tion); however, such classifiers require non-negligible time towards
manual feature selection (i. e., on features that are harder for an
attacker to change), and—at least in the context of Windows mal-
ware [133]—they suffer from high false positives and an average
reduction in detection rate of 13%.

realizable adversarial attacks in security 69

Moreover, we remark that we decide to add goodware gadgets to
malware for practical reasons: the opposite transplantation would
be immediate to do if a dataset with annotated malicious bytecode
segments were available. As part of future work we aim to inves-
tigate whether it would still be possible to evade monotonic clas-
sifiers by adding only a minimal number of malicious slices to a
benign application.

We hypothesize that monotonic
classifiers may be promising to
defend against addition-only
attacks such as ours...

Defenses Against Problem-Space Attacks. Unlike settings
where feature and problem space are closely related (e.g., images
and audio), limitations on feature-space Lp perturbations are often
insufficient to determine the risk and feasibility of an attack in the
real world. Our novel problem-space formalization (Section 4.3)
paves the way to the study of practical defenses that can be effective
in settings which lack an inverse feature mapping. Simulating and

...but emphasize that defenses
must consider realistic problem-
space constraints.

evaluating attacker capabilities in the problem space helps define
realistic threat models with more constrained modifications in the
feature space—which may lead to more robust classifier design.
Our Android evasion attack (Section 4.4) demonstrates for the first
time that it is feasible to evade feature-space defenses such as Sec-
SVM in the problem-space—and to do so en masse.

4.8 Related Work

Adversarial Machine Learning. Adversarial ML attacks have been
studied for more than a decade [34]. These attacks aim to modify
objects either at training time (poisoning [277]) or at test time (eva-
sion [37]) to compromise the confidentiality, integrity, or availability
of a machine learning model. Many formalizations have been pro-
posed in the literature to describe feature-space attacks, either as
optimization problems [37, 51] (see also Section 4.3.1 for details) or
game theoretic frameworks [72].

Problem-Space Attacks. Recently, research on adversarial ML
has moved towards domains in which the feature mapping is
not invertible or not differentiable. Here, the adversary needs to
modify the objects in the problem space (i. e., input space) with-
out knowing exactly how this will affect the feature space. This
is known as the inverse feature-mapping problem [131, 37, 231].
Many works on problem-space attacks have been explored on
different domains: text [169, 10], PDFs [185, 184, 164, 73, 318],
Windows binaries [154, 232, 240], Android apps [77, 119, 321],
NIDS [100, 16, 17, 65], ICS [331], and Javascript source code [231].
However, each of these studies has been conducted empirically
and followed some inferred best practices: while they share many
commonalities, it has been unclear how to compare them and what
are the most relevant characteristics that should be taken into ac-
count while designing such attacks. Our formalization (Section 4.3)
aims to close this gap, and we show how it can be used to describe
representative feature-space and problem-space attacks from the

70 machine learning for security in hostile environments

literature (Section 4.3.3).
Adversarial Android Malware. We also propose a novel adver-

sarial problem-space attack in the Android domain (Section 4.4);
our attack overcomes limitations of existing proposals, which are
evidenced through our formalization. The most related approaches
to our novel attack are on attribution [231], and on adversarial mal-
ware generation [321, 240, 119]. Quiring et al. [231] do not consider
malware detection, but design a set of simple mutations to change
the programming style of an application to match the style of a
target developer (e.g., replacing for loops with while loops). This
strategy is effective for attribution, but is insufficient for malware
detection as altering stylometric properties alone would not evade
a malware classifier which captures program semantics. Moreover,
it is not feasible to define a hardcoded set of transformations for all
possible semantics—which may also leave artifacts in the mutated
code. Conversely, our attack relies on automated software trans-
plantation to ensure plausibility of the generated code and avoids
hardcoded code mutation artifacts.

Grosse et al. [119] perform minimal modifications that preserve
semantics, and only modify single lines of code in the Manifest; but
these may be easily detected and removed due to unused permis-
sions or undeclared classes. Moreover, they limit their perturbation
to 20 features, whereas our problem-space constraints represent a
more realistic threat model.

Yang et al. [321] propose a method for adversarial Android mal-
ware generation. Similarly to us, they rely on automated software
transplantation [28] and evaluate their adversarial attack against the
DREBIN classifier [19]. However, they do not formally define which
semantics are preserved by their transformation, and their approach
is extremely unstable, breaking the majority of apps they mutate
(e.g., they report failures after 10+ modifications on average—which
means they would likely not be able to evade Sec-SVM [77] which
on average requires modifications of 50+ features). Moreover, the
code is unavailable, and the paper lacks details required for reeval-
uating the approach, including any clear descriptions of preprocess-
ing robustness. Conversely, our attack is resilient to the insertion
of a large number of features (Section 4.5), preserves dynamic app
semantics through opaque predicates (Section 4.4.3), and is resilient
against static program analysis (Section 4.4.4).

Rosenberg et al. [240] propose a black-box adversarial attack
against Windows malware classifiers that relies on API sequence
call analysis—an evasion strategy that is also applicable to similar
Android classifiers. In addition to the limited focus on API-based
sequence features, their problem-space transformation leaves two
major artifacts which could be detected through program analysis:
the addition of no-operation instructions (no-ops), and patching of
the import address table (IAT). Firstly, the inserted API calls need to
be executed at runtime and so contain individual no-ops hardcoded
by the authors; intuitively, they could be detected and removed

realizable adversarial attacks in security 71

by identifying the tricks used by attackers to perform no-op API
calls (e.g., reading 0 bytes), or by filtering the “dead” API calls (i. e.,
which did not perform any real task) from the dynamic execution
sequence before feeding it to the classifier. Secondly, to avoid re-
quiring access to the source code, the new API calls are inserted
and called using IAT patching. However, all of the new APIs must
be included in a separate segment of the binary and, as IAT patch-
ing is a known malicious strategy used by malware authors [88],
IAT calls to non-standard dynamic linkers or multiple jumps from
the IAT to an internal segment of the binary would immediately
be identified as suspicious. Conversely, our attack does not require
hardcoding and by design is resilient against traditional non-ML
program analysis techniques.

4.9 Summary

Since the seminal work that evidenced intriguing properties of neu-
ral networks [279], the community has become more widely aware
of the brittleness of machine learning in adversarial settings [34].

To better understand real-world implications across different
application domains, we propose a novel formalization of problem-
space attacks as we know them today, that enables comparison
between different proposals and lays the foundation for more prin-
cipled designs in subsequent work. We uncover new relationships
between feature space and problem space, and provide necessary
and sufficient conditions for the existence of problem-space attacks.
Our novel problem-space attack shows that automated genera-
tion of adversarial malware at scale is a realistic threat—taking on
average less than 2 minutes to mutate a given malware example
into a variant that can evade a hardened classifier. Additionally we
have demonstrated the feasibility of using our attack to generate
problem-space UAPs, scalable adversarial perturbations that trans-
fer across many inputs, which can be used by Malware-as-a-Service
providers to make many malware evasive at low cost.

The function of wisdom is to
discriminate between good and evil.

Marcus Tullius Cicero

Part III:

Detection in a Hostile

Environment

73

5 Limiting Experimental Bias in ML for Security

5.1 Key Insights

5.2 Overview

5.3 Initial Experimental Setup

5.4 Sources of Experimental Bias

5.5 Space-Time Aware Evaluation

5.6 Tesseract: Revealing Hid-
den Performance

5.7 Delaying Time Decay

5.8 Beyond Android Malware

5.9 Tesseract Operation and
Limitations

5.10 Other Sources of Experimen-
tal Bias in ML

5.11 Related Work

5.12 Summary

Adversarial interactions and the hostile environment they
produce, as discussed in Part II, can destabilize security detection
systems. As a result, performing fair and informative experiments
in such a dynamic and volatile environment is very challenging.

For example, as attackers drive the malicious class to evolve over
time, bias can be introduced if knowledge about that evolution is
not correctly handled during training and test phases. Similarly, not
accounting for the typically low prevalence of the malicious class in
the general population can result in inflated performance results.

To begin, this chapter examines how to design and evaluate ma-
chine learning-based security detectors while accounting for the
specific nature of the hostile environment, using malware detectors
as a case study. Once a stable and consistent evaluation is possible,
we can compare potential mitigations against concept drift and in
Chapter 6 we will dive deeper into a classification-with-rejection
approach for detecting and quarantining drifting examples.

5.1 Key Insights

For reference, this chapter provides the following contributions:

• We identify temporal bias associated with incorrect train-test
splits (Section 5.4.2) and spatial bias related to unrealistic as-
sumptions in dataset distribution (Section 5.4.3).

• We experimentally verify on a dataset of 129K apps (with 10%
malware) that, once sources of bias are removed, performance
can decrease up to 50% in practice (Section 5.4.1) for two well-
known Android malware classifiers, Drebin [19] (Alg1) and
MaMaDroid [187] (Alg2).

• We propose novel building blocks for the more robust evaluation
of malware classifiers: a set of spatio-temporal constraints to be
enforced in experimental settings (Section 5.5.1); a new metric,
AUT, that captures a classifier’s robustness to time decay in a
single number and allows for the fair comparison of different

76 machine learning for security in hostile environments

algorithms (Section 5.5.2); and a novel tuning algorithm that em-
pirically optimizes the classification performance, when malware
represents the minority class (Section 5.5.3).

• We compare the performance of Alg1 [19], Alg2 [187] and
DL [118] (a deep learning-based approach), and show how re-
moving sources of bias can lead to counterintuitive performance
results (Section 5.6).

• We implement our methodology as an open-source Python li-
brary, Tesseract, to aid in the design and execution of fair eval-
uations, and further demonstrate how our findings can be used
to evaluate performance-cost trade-offs of solutions to mitigate
time decay such as active learning (Section 5.7).

• To more broadly inspect the impact of spatio-temporal bias,
we assess their pervasiveness in recent literature beyond the
Android malware domain (Section 5.8). For completeness, we
also describe a general set of pitfalls afflicting machine learning-
based security evaluations, their prevalence in recent literature,
and recommendations for avoiding them (Section 5.10).

The content of this chapter has been previously presented in the
following publications:

• Pendlebury F.*, Pierazzi F.*, Jordaney R., Kinder J., Cavallaro L.
Enabling Fair ML Evaluations for Security. In Proc. of the ACM
Conference on Computer and Communications Security (CCS) (poster).
2018.

• Pendlebury F.*, Pierazzi F.*, Jordaney R., Kinder J., Cavallaro L.
TESSERACT: Eliminating Experimental Bias in Malware Classi-
fication Across Space and Time. In Proc. of the USENIX Security
Symposium. 2019.

• Arp, D., Quiring E., Pendlebury F., Warnecke A., Pierazzi F.,
Wressnegger C., Cavallaro L., Rieck K. Dos and Don’t of Machine
Learning in Computer Security. To appear in Proc. of the USENIX
Security Symposium. 2022.

5.2 Overview

Prior work on ML-based malware
detection has reported almost
perfect results...

Machine learning-based malware detection approaches have re-
ported tantalizingly high performance figures across a wide range
of domains including Windows malware [71, 281, 188], PDF mal-
ware [271, 184], malicious URLs [274, 167], malicious JavaScript [236,
70], and Android malware [19, 187, 118]. With results approaching
100% accuracy, it seems malware should be a problem of the past.

However, security settings have specific properties which need
to be accounted for. For example, as we have shown, malware clas-
sifiers operate in a hostile, dynamic environment. As malware

limiting experimental bias in ml for security 77

evolves and new variants and families appear over time, predic-
tion quality decays [139], therefore, temporal consistency matters
for evaluating the effectiveness of a classifier. Some experimental
setups may erroneously allow a classifier to train on what is effec-
tively future knowledge, inflating the reported results [6, 194].

...particularly for Android mal-
ware detection...

It turns out that sources of bias have affected evaluations through-
out the security community, affecting multiple security domains. In
this chapter we focus on the Android malware domain as a case
study as there exists an endemic issue where Android malware
classifiers [e.g., 19, 276, 187, 109, 324, 74, 323, 118] are not evaluated
in settings representative of real-world deployments. Our reasons
for focusing on Android are due to the availability of (a) a public,
large-scale, and timestamped dataset (AndroZoo [8]) and (b) algo-
rithms that are feasible to reproduce (where all [187] or part [19] of
the code has been released).

We identify experimental bias in two dimensions, space and time.
Spatial bias refers to unrealistic assumptions about the ratio of good-
ware to malware in the data. The ratio of goodware to malware is
domain-specific, but it must be enforced consistently during the
test phase to mimic a realistic scenario. For example, measurement
studies on Android suggest that most apps in the wild are good-
ware [173, 114], whereas for (desktop) software download events
most URLs are malicious [183, 234].

...but these results are largely
inflated by experimental bias.

Temporal bias refers to temporally inconsistent evaluations which
integrate future knowledge about the test objects into the training
phase [6, 194] or create unrealistic settings. This problem is exacer-
bated by families of closely related malware, where including even
one variant in the training set may allow the algorithm to identify
many variants in the test set.

We believe that the pervasiveness of these issues is due to two
main reasons: first, possible sources of evaluation bias are not com-
mon knowledge; second, accounting for time complicates the eval-
uation and does not allow a comparison to other approaches using
headline evaluation metrics such as the F1-Score or AUC. Here we
address these issues by systematizing evaluation bias for Android
malware classification and providing new constraints for sound
experiment design along with new metrics and tool support.

We identify sources and effects of
spatio-temporal bias...

This study continues a line of investigation started by prior
work on challenges and experimental bias in security evalua-
tions [241, 267, 296, 6, 194, 23]. The base-rate fallacy [23] describes
how evaluation metrics such as TPR and FPR are misleading in
intrusion detection, due to significant class imbalance (i. e., most
traffic is benign); in contrast, we identify and address experimen-
tal settings that give misleading results regardless of the adopted
metrics—even when correct metrics are reported. Sommer and Pax-
son [267], Rossow et al. [241], and van der Kouwe et al. [296] dis-
cuss possible guidelines for sound security evaluations; but none of
these works identify temporal and spatial bias, nor do they quantify
the impact of errors on classifier performance. Allix et al. [6] and

78 machine learning for security in hostile environments

Miller et al. [194] identify an initial temporal constraint in Android
malware classification, but we show that even the results of recent
work that followed their guidelines (e.g., Mariconti et al. [187]) suf-
fer from other forms of temporal and spatial bias (Section 5.6). To
the best of our knowledge, this study is the first to identify and
address these sources of bias with novel, actionable constraints,
metrics, and tool support (Section 5.5).

...and propose constraints, met-
rics, and tooling to support fair,
realistic evaluations.

We introduce a framework for fair evaluations, Tesseract, that
can assist the research community in producing comparable results,
revealing counterintuitive performance, and assessing a classi-
fier’s prediction qualities in an industrial deployment (Section 5.9).
Tesseract also creates an opportunity to evaluate the extent to
which spatio-temporal experimental bias affects security domains
other than Android malware, and we encourage the security com-
munity to embrace its underpinning philosophy.

5.3 Initial Experimental Setup

This section describes the initial experimental setup with which we
will assess experimental bias in the reference algorithms. As a case
study, we focus on Android malware classification. In Section 5.3.1
we introduce the reference approaches evaluated, in Section 5.3.2
we discuss the domain-specific prevalence of malware, and in Sec-
tion 5.3.3 we introduce the dataset used throughout the chapter.

Use of the term “bias”: We use (experimental) bias to refer to
the details of an experimental setting that depart from the con-
ditions in a real-world deployment and can have a misleading
impact (bias) on evaluations. It should not be conflated with the
classifier bias/variance trade-off [40] from traditional machine
learning terminology.

5.3.1 Reference Algorithms

We assess bias in the evalua-
tions of Drebin [19] and Ma-
MaDroid [187]...

To assess experimental bias (Section 5.4), we consider two high-
profile machine learning-driven techniques for Android malware
classification, both published in top-tier security conferences. The
first approach is Drebin (Alg1) [19], a linear support vector ma-
chine (SVM) on high-dimensional binary feature vectors engineered
with a lightweight static analysis. The second approach is Ma-
MaDroid (Alg2) [187], a Random Forest (RF) applied to features
engineered by modeling caller-callee relationships over Android
API methods as Markov chains.

We choose Alg1 and Alg2 as they build on different types of
static analysis to generate feature spaces capturing Android appli-
cation characteristics at different levels of abstraction; furthermore,

limiting experimental bias in ml for security 79

they use different machine learning algorithms to learn decision
boundaries between benign and malicious Android apps in the
given feature space. Thus, they represent a broad design space
and support the generality of our methodology for characterizing
experimental bias.

For a sound experimental baseline, we replicate the settings and
experiments of Alg1 [19] (linear SVM with C=1) and Alg2 [187]
(package mode and RF with 101 trees and max depth of 64) as
described in the respective papers [19, 187], successfully repro-
ducing the published results. Since on our dataset (described in
Section 5.3.3) the Alg1 performance is slightly lower (~0.91 10-
fold F1-Score), we also reproduce the experiment on their original
dataset [19], achieving their original performance of ~0.94 10-fold
F1-Score. We use SCIKIT-LEARN [221], with sklearn.svm.LinearSVC
for Alg1 and sklearn.ensemble.RandomForestClassifier for Alg2.

...as well as a deep learning-based
Android malware detector [118].

Since Alg1 and Alg2 adopt traditional ML algorithms, in Sec-
tion 5.5 we also consider DL [118], a deep learning-based approach
that takes as input the same features as Alg1 [19]. We include DL
because the latent feature space of deep learning approaches can
capture different representations of the input data [118], which
may affect their robustness to time decay. We follow the guidelines
from Grosse et al. [118] to reimplement DL with KERAS. The fea-
tures given as initial input to the neural network are the same as
Alg1. We replicate the best-performing neural network architec-
ture of Grosse et al. [118], by training with 10 epochs and batch size
equal to 1,000. To perform the training optimization, we use the
stochastic gradient descent class keras.optimizers.SGD with the fol-
lowing parameters: lr=0.1, momentum=0.0, decay=0.0, nesterov=False.
Some low-level details of the hyperparameter optimization were
missing from the original paper [118]; we managed to obtain
slightly higher F1 performance in 10-fold setting likely because
they have performed hyperparameter optimization on the Accuracy
metric [40]—which is misleading in imbalanced datasets [23] where
one class is more prevalent (e.g., goodware, in Android).

It speaks to the scientific standards of these papers that we were
able to replicate the experiments; indeed, we would like to em-
phasize that we do not criticize them specifically. We use these
approaches for our evaluation because they are available and offer
stable baselines.

5.3.2 Estimating in-the-wild Malware Ratio

Before constructing a dataset, a
realistic prevalence for the mali-
cious class must be estimated...

The proportion of malware in the dataset can greatly affect the per-
formance of the classifier (Section 5.4), therefore, unbiased exper-
iments require a dataset with a realistic ratio of malware to good-
ware; on an already existing dataset, this ratio may be enforced by,
for instance, downsampling the majority class (Section 5.4.3).

Each malware domain has its own, often unique, ratio of mal-

80 machine learning for security in hostile environments

J F M A M J J
2014

A S O N D J F M A M J J
2015

A S O N D J F M A M J J
2016

A S O N D

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

3
8
3

2
6
3

3
8
1

4
8
5

6
0
8

7
2
4 1
0
7
2

4
9
9

3
9
9

5
9
1

1
4
5

1
4
7

1
4
4

1
2
9

2
1
5

1
8
3

2
2
1

2
1
6

2
7
5

2
7
2

3
5
4

3
1
3

3
7
4

3
6
9

3
4
4

4
7
6

6
3
5

6
1
2

4
5
2

2
7
8

3
5
2 5
6
4

1
4
8

8
1

3
4
4
0

3
0
6
7 3
4
8
5 4
1
0
1

5
0
8
1

6
0
6
6

8
7
4
5

4
7
8
8

4
1
7
6

6
3
4
5

1
3
0
5

1
4
4
4

1
5
6
4

1
2
3
1 1
8
8
8

1
8
3
8

1
9
5
3

2
0
9
8 2
5
2
1

2
7
6
8

3
0
7
7

2
9
3
2

3
0
1
0

3
2
8
9

3
4
7
8 3
9
5
9

5
8
1
8 6
3
6
8

4
0
5
2

2
8
0
6

3
0
2
7

4
8
8
1

1
3
7
7

7
5
8

2
3
1
9
0

8
6
7

Training Testing
Goodware

Malware Figure 5.1: A stack histogram
showing the monthly distribu-
tion of apps in our dataset of
129, 728 Android applications
(with average 10% malware)
from 2014–2016.

ware to goodware typically encountered in the wild. First, it is
important to know if the ratio is balanced, or if malware is the mi-
nority or majority class. For example, malware is the minority class
in network traffic [23] and Android [173], but it is the majority class
in binary download events [234].

On the one hand, the estimation of the percentage of malware
in the wild for a given domain is a non-trivial task. On the other
hand, measurement papers, industry telemetry, and publicly-
available reports may all be leveraged to obtain realistic estimates.

In the Android landscape, malware represents 6%–18.8% of
all apps, according to different sources: a key industrial player1 1 Information obtained through confi-

dential emails with the authors.reported the ratio as approximately 6%, whereas the AndRadar
measurement study [173] reports around 8% of Android malware
in the wild. Google’s 2017 Android security report [114] suggests
6–10% malware, whereas an analysis of the metadata of the Andro-
Zoo dataset [8] totaling almost 8M Android apps updated regularly,
reveals an incidence rate of 18.8%.

The data suggests that, in the Android domain, malware is the
minority class. For our experiments, we stabilize its percentage at
10% (a de-facto average across the various estimates), with per-
month values between 8% and 12%. Settling on an average overall
ratio of 10% Android malware also allows us to collect a dataset
with a statistically sound number of per-month malware. An ag-

...which for Android malware we
determine to be ~10%.

gressive undersampling would have decreased the statistical signif-
icance of the dataset, whereas oversampling goodware would have
been too resource intensive (Section 5.3.3).

5.3.3 Dataset

We consider samples from the AndroZoo [8] dataset, consisting of
more than 8.5 million Android apps between 2010 and 2019: each
is associated with a timestamp, and most apps include VirusTotal

limiting experimental bias in ml for security 81

metadata results. The dataset is kept updated by crawling from
different markets (e.g., more than 4 million apps from Google Play
Store, and the remaining from markets such as Anzhi and Ap-
pChina). We use this dataset due to its size and timespan, allowing
us to perform realistic space- and time-aware experiments.

We construct a dataset with
apps from the AndroZoo [8]
repository...

Goodware and malware. AndroZoo’s metadata reports the num-
ber p of positive anti-virus reports on VirusTotal [115] for appli-
cations in the AndroZoo dataset. We chose p = 0 for goodware
and p ≥ 4 for malware, following Miller et al.’s [194] advice for a
reliable ground-truth. About 13% of AndroZoo apps can be called
grayware as they have 0 < p < 4. We exclude grayware from the
sampling as including it as either goodware or malware could dis-
advantage classifiers whose features were designed with a different
labeling threshold, however we note that for the evaluation of new
detection systems this can itself introduce a bias (Section 5.10).

Choosing apps. The number of apps we consider is affected
by the feature extraction cost, and partly by storage space re-
quirements (as the full AndroZoo dataset at the time of writing
is more than 50TB). Extracting features for the whole AndroZoo
dataset may take up to three years on our research infrastruc-
ture (three Dell PowerEdge R730 nodes, each with 2 x 14 cores in
hyperthreading—in total, 168 vCPU threads, 1.2TB of RAM, and a
100TB NAS), so we decide to extract features from 129K apps (Sec-
tion 5.3.2). We believe this represents a large dataset with enough
statistical significance. To evaluate time decay, we choose a gran- ...with apps from 2014–2016 and

partitioned by month...ularity of one month, and uniformly sample 129K AndroZoo apps
in the period from Jan 2014 to Dec 2016 while enforcing an over-
all average of 10% malware (see Section 5.3.2)—with an allowed
percentage of malware per month between 8% and 12%, to ensure
some variability. Spanning over three years ensures 1,000+ apps
per month (except for the last three months, where AndroZoo had
crawled less applications). We consider apps up to Dec 2016 as
VirusTotal results for 2017 and 2018 apps were mostly unavail-
able from AndroZoo at the time of the study; moreover, Miller et
al. [194] empirically evaluated that antivirus detections stabilize
after approximately one year so ending at Dec 2016 increases confi-
dence in malware ground-truth labels.

...totaling 116,993 goodware and
12,735 malware overall.

Dataset summary. The final dataset consists of 129,728 Android
applications (116,993 goodware and 12,735 malware). Figure 5.1
reports a stack histogram showing the per-month distribution of
goodware/malware in the dataset. For the sake of clarity, the figure
also reports the number of malware and goodware in each bin. The
training and test splits used in Section 5.4 are reported in Table 5.2;
all the time-aware experiments in the remainder of this chapter are
performed by training on 2014 and testing on 2015 and 2016 (see
the vertical dotted line in Figure 5.1).

82 machine learning for security in hostile environments

Work Apps Date Range # Objects Total Violations

Tesseract

(this work)
Benign

Jan 2014 - Dec 2016

116,993 116,993

-
Malicious 12,735 12,735

Alg1 [19]
& DL [118]

Benign
Aug 2010 - Oct 2012

123,453 123,453

C1

Malicious 5,560 5,560

Alg2 [187]

Benign
Apr 2013 - Nov 2013 5,879

8,447

(C1)
C2

C3

Mar 2016 2,568

Malicious

Oct 2010 - Aug 2012 5,560

35,493

Jan 2013 - Jun 2013 6,228

Jun 2013 - Mar 2014 15,417

Jan 2015 - Jun 2015 5,314

Jan 2016 - May 2016 2,974

Table 5.1: Summary of dataset
composition in this study
(1st row) compared to prior
work [19, 187, 118] (2nd and
3rd row).

For reference, Table 5.1 compares the composition of the dataset
used in our study (1st row) to the datasets used in the biased evalu-
ations for Alg1 [19], Alg2 [187], and DL [118] (2nd and 3rd row).
Unless otherwise stated, we always evaluate Alg1, Alg2, and DL
with the dataset in the first row, because we have built it to allow
experiments without spatio-temporal bias.

5.4 Sources of Experimental Bias

In this section, we motivate our discussion of bias through an em-
pirical assessment of Alg1 [19] and Alg2 [187] (Section 5.4.1). We
then detail the sources of temporal (Section 5.4.2) and spatial bias
(Section 5.4.3) that affect ML-based Android malware classification.

5.4.1 Motivational Example

We compare the original experi-
mental settings [19, 187] to more
realistic settings...

We consider a motivational example in which we vary the sources
of experimental bias to illustrate the problem. Table 5.2 reports the
F1-Score for Alg1 and Alg2 under various experimental config-
urations; rows correspond to different sources of temporal bias,
and columns correspond to different sources of spatial bias. On the
left-part of Table 5.2, we use squares (�/�) to show from which
time frame training and test objects are taken; each represents six
months (in the window from Jan 2014 to Dec 2016). Black squares
(�) denote that samples are taken from that six-month time frame,
whereas periods with gray squares (�) are not used. The columns
on the right part of the table correspond to different percentages of
malware in the training set Tr and the test set Ts.

...showing that results are inflated
due to experimental bias.

Table 5.2 shows that both Alg1 and Alg2 perform far worse
in realistic settings (bold with blue background in the last row,
for columns corresponding to 10% malware in the test set) than in
settings similar to those presented in the original proposals [19, 187]
(bold with red background) due to inadvertent experimental bias.

limiting experimental bias in ml for security 83

% mw in test set Ts
10% (realistic) 90% (unrealistic)

% mw in training set Tr % mw in training set Tr
Sample dates 10% 90% 10% 90% 10% 90% 10% 90%

Experimental setting Training Test Alg1 [19] Alg2 [187] Alg1 [19] Alg2 [187]

10-fold CV
gw: ������ gw: ������

0.56 0.83 0.32 0.94 0.98 0.85

mw: ������ mw: ������
0.91 0.97

Temporally inconsistent
gw: ������ gw: ������

0.76 0.42 0.49 0.21 0.86 0.93 0.54

mw: ������ mw: ������
0.95

Temporally inconsistent gw: ������ gw: ������
0.77 0.70 0.65 0.56 0.79 0.94 0.65

gw/mw windows mw: ������ mw: ������
0.93

Temporally consistent gw: ������ gw: ������
0.62 0.94 0.33 0.96

(realistic) mw: ������ mw: ������
0.58 0.45 0.32 0.30

Table 5.2: F1-Scores showing
impact of spatial (columns)
and temporal (rows) bias.
Values in red are results of
(unrealistic) settings sim-
ilar to the original papers
[19, 187]; values in blue (last
row) are results in realistic
settings. Squares are six month
data windows: black if in-
cluded (�), gray if not (�).

Note: We clarify which similar settings of the original propos-
als [19, 187] we refer to in the cells with red background in Ta-
ble 5.2. The paper of Alg2 [187] reports in the abstract perfor-
mance “up to 99% F1”, which (out of the many settings they eval-
uate) corresponds to a scenario with 86% malware in both training
and test, evaluated with 10-fold CV; here we round to 90% malware
for a cleaner presentation (we have experimentally verified that
results with 86% and 90% malware-to-benign class ratio are simi-
lar). Alg1’s original paper [19] relies on hold-out by performing 10

random splits (66% training and 33% test). Since hold-out is almost
equivalent to k-fold CV and suffers from the same spatio-temporal
biases, for the sake of simplicity in this section we refer to a k-fold
CV setting for both Alg1 and Alg2.

5.4.2 Temporal Experimental Bias

As discussed in previous chapters, concept drift, also known as
dataset shift [199], is a problem that occurs in machine learning
when a model becomes obsolete as the distribution of incoming
data at test-time differs from that of training data, i. e., when the
assumption does not hold that data is independent and identically
distributed (i.i.d.) [139]. Time decay is the decrease in model perfor-
mance over time caused by concept drift.

Concept drift in malware, combined with similarities among
malware within the same family, causes k-fold cross validation (CV)
to be positively biased, artificially inflating the performance of mal-
ware classifiers [6, 194, 195]. Not accounting for drift in the

data distribution...K-fold CV is likely to include in the training set at least one sam-
ple of each malware family in the dataset, whereas new families
will be unknown at training time in a real-world deployment. The
all-black squares in Table 5.2 for 10-fold CV refer to each train-
ing/test fold of the 10 iterations containing at least one sample
from each time frame.

The use of k-fold CV is widespread in malware classification re-

84 machine learning for security in hostile environments

10% 25% 50% 75% 90%
%mw (Testing set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (mw)
Precision (mw)
Recall (mw)
F1 (gw)
Precision (gw)
Recall (gw)

(a) Alg1: Train with 10% mw

10% 25% 50% 75% 90%
%mw (Testing set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Alg1: Train with 90% mw

10% 25% 50% 75% 90%
%mw (Testing set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Alg2: Train with 10% mw

10% 25% 50% 75% 90%
%mw (Testing set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Alg2: Train with 90% mw

Figure 5.2: Spatial bias in test-
ing. For increasing % of test set
malware, Precision increases
and Recall remains the same;
causing F1-Score to rise.

search [195, 234, 276, 183, 71, 281, 188, 271, 324, 70]; while a useful
mechanism to prevent overfitting [40] or estimate the performance
of a classifier in the absence of concept drift when the i.i.d. assump-
tion holds (see considerations in Section 5.6), it has been unclear
how it affects the real-world performance of machine learning tech-
niques with non-stationary data that are affected by time decay.
Here, in the first row of Table 5.2, we quantify the performance
impact in the Android malware domain.

...leads to temporal bias where
models are anachronistically
trained on data from the future...

The second row of Table 5.2 reports an experiment in which a
classifier’s ability to detect past objects is evaluated [6, 187]. Al-
though this characteristic is important, high performance should
be expected from a classifier in such a scenario: if the classifier
contains at least one variant of a past malware family, it will likely
identify similar variants. We thus believe that experiments on the
performance achieved on the detection of past malware can be
misleading; the community should focus on building malware clas-
sifiers that are robust against time decay.

In the third row, we identify a novel temporal bias that occurs
when goodware and malware correspond to different time periods,
often due to having originated from different data sources [e.g.,
187]. The black and gray squares in Table 5.2 show that, although
malware test objects are posterior to malware training objects, the
goodware/malware time windows do not overlap; in this case, the
classifier may learn to distinguish applications from different time
periods, rather than goodware from malware—again leading to
artificially high performance. For instance, spurious features such
as new API methods may be able to strongly distinguish objects
simply because malicious applications predate that API.

...or learn to distinguish between
new and old apps rather than
malicious and benign behavior.

The last row of Table 5.2 shows that the realistic setting, where
training is temporally precedent to testing, causes the worst clas-
sifier performance in the majority of cases. We present decay plots
and a more detailed discussion in Section 5.5.

5.4.3 Spatial Experimental Bias

We identify two main types of spatial experimental bias based
on assumptions on percentages of malware in test and training
sets. All experiments in this section assume temporal consistency.

limiting experimental bias in ml for security 85

The model is trained on 2014 and tested on 2015 and 2016 (last
row of Table 5.2) to allow the analysis of spatial bias without the
interference of temporal bias.

Testing with unrealistic base rates
will produce inflated results...

Spatial experimental bias in testing. The percentage of malware
in the test distribution needs to be estimated (Section 5.3.2) and
cannot be changed, if one wants results to be representative of in-
the-wild deployment of the malware classifier. To understand why
this leads to biased results, we artificially vary the test distribution.
Figure 5.2 reports the performance (F1-Score, Precision, Recall)
when increasing the percentage of malware during testing on the
x-axis. We change the percentage of malware in the test set by
randomly downsampling goodware, so that the number of malware
remains fixed throughout the experiments. For completeness, we
report the two training settings from Table 5.2 with 10% and 90%
malware, respectively.

Let us first focus on the malware performance (dashed lines). All
plots in Figure 5.2 exhibit constant Recall, and increasing Precision
for increasing percentage of malware in the test set. Precision for
the malware (mw) class—the positive class—is defined as Pmw =
TP/(TP + FP) and Recall as Rmw = TP/(TP + FN). In this scenario, we
can observe that TPs (i. e., malware objects correctly classified as
malware) and FNs (i. e., malware objects incorrectly classified as
goodware) do not change, because the number of malware does not
increase; hence, Recall remains stable. The increase in number of
FPs (i. e., goodware objects misclassified as malware) decreases as
we reduce the number of goodware in the dataset; hence, Precision
improves. Since the F1-Score is the harmonic mean of Precision and
Recall, it goes up with Precision. We also observe that, inversely,
the Precision for the goodware (gw) class—the negative class—
Pgw = TN/(TN + FN) decreases (see yellow solid lines in Figure 5.2),
because we are reducing the TNs while the FNs do not change.
This example shows how considering an unrealistic test distribution
with more malware than goodware in this context (Section 5.3.2)
positively inflates Precision and hence the F1-Score of the malware
classifier.

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.5

1.0

x 2

gw
mw

(a) Training 10% mw; Testing 10% mw

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.5

1.0

x 2

gw
mw

(b) Training 50% mw; Testing 10% mw

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.5

1.0

x 2

gw
mw

(c) Training 90% mw; Testing 10% mw

Figure 5.3: Example of train-
ing bias with Linear-SVM and
two features. Test set is fixed at
10% malware but as rate in the
training set increases, the deci-
sion boundary moves towards
goodware, improving Recall
but decreasing Precision.

Spatial experimental bias in training. To understand the im-
pact of altering malware-to-goodware ratios in training, we now
consider a motivating example with a linear SVM in a 2D feature
space, with features x1 and x2. Figure 5.3 reports three scenarios, all
with the same 10% malware in the test set, but with 10%, 50%, and
90% malware in training.

We can observe that with an increasing percentage of malware in
training, the hyperplane moves towards goodware. More formally,
it improves Recall of malware while reducing its Precision. The
opposite is true for goodware. To minimize the overall error rate
Err = (FP + FN)/(TP + TN + FP + FN) (i. e., maximize Accuracy), one
should train the dataset with the same distribution that is expected

86 machine learning for security in hostile environments

10% 25% 50% 75% 90%
%mw (Training set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (mw)
Precision (mw)
Recall (mw)
F1 (gw)
Precision (gw)
Recall (gw)

(a) Alg1: Test with 10% mw

10% 25% 50% 75% 90%
%mw (Training set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Alg1: Test with 90% mw

10% 25% 50% 75% 90%
%mw (Training set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) Alg2: Test with 10% mw

10% 25% 50% 75% 90%
%mw (Training set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Alg2: Test with 90% mw

Figure 5.4: Spatial bias in train-
ing. For increasing % of mal-
ware in the training, Precision
decreases and Recall increases.

in the test set. However, in this scenario one may have more interest
in finding objects of the minority class (e.g., “more malware”) by
improving Recall subject to a constraint on maximum FPR.

...but altering the class balance of
the training set can be a legitimate
way to tune the classifier.

Figure 5.4 shows the performance for Alg1 and Alg2, for in-
creasing percentages of malware in training on the X-axis; just for
completeness (since one cannot artificially change the test distribu-
tion to achieve realistic evaluations), we report results both for 10%
malware in testing and for 90% malware in testing, but we remark
that in the Android setting we have estimated 10% malware in the
wild (Section 5.3.2). These plots confirm the trend in our motivat-
ing example (Figure 5.3), that is, Rmw increases but Pmw decreases.
For the plots with 10% malware in testing, we observe there is a
point in which F1-Scoremw is at a maximum while the error for the
goodware class is within 5%.

In Section 5.5.3, we propose a novel algorithm to improve the
performance of the malware class according to the objective of the
user (high Precision, Recall or F1-Score), subject to a maximum
tolerated error. Moreover, in Section 5.5 we introduce constraints
and metrics to guarantee bias-free evaluations, while revealing
counterintuitive results.

Remark on downsampling We choose to downsample goodware
(gw) to achieve up to 90% of malware (mw) for testing because
of the computational and storage resources required to achieve
such a ratio by oversampling. This does not alter the conclusions of
our analysis. Let us assume a scenario in which we keep the same
number of goodware, and increase the percentage of mw in the
dataset by oversampling mw. The precision (Pmw = TP/(TP + FP))
would increase because TPs would increase for any mw detection,
and FPs would not change—because the number of gw remains
the same; if training (resp. test) observations are sampled from
a distribution similar to the mw in the original dataset (e.g., new
training mw is from 2014 and new test mw comes from 2015 and
2016), then Recall (Rmw = TP/(TP + FN)) would be stable—it would
have the same proportions of TPs and FNs because the classifier
will have a similar predictive capability for finding mw. Hence,
if the number of mw in the dataset increases, the F1-Score would
increase as well, because Precision increases while Recall remains
stable.

limiting experimental bias in ml for security 87

5.5 Space-Time Aware Evaluation

We now formalize how to perform an evaluation of an Android
malware classifier free from spatio-temporal bias. We define a novel
set of constraints that must be followed for realistic evaluations
(Section 5.5.1); we introduce a novel time-aware metric, AUT, that
captures in one number the impact of time decay on a classifier
(Section 5.5.2); we propose a novel tuning algorithm that empiri-
cally optimizes a classifier’s performance, subject to a maximum
tolerated error (Section 5.5.3); finally, we introduce Tesseract and
provide counterintuitive results through unbiased evaluations (Sec-
tion 5.6). For reference, we report in the front matter of this thesis a
table with all major symbols used in the remainder of this chapter.

5.5.1 Evaluation Constraints

Let us consider D as a labeled dataset with two classes: malware
(positive class) and goodware (negative class). Let us define si ∈ D
as an object (e.g., Android app) with timestamp time(si). To evaluate
the classifier, the dataset D must be split into a training dataset Tr
with a time window of size W, and a test dataset Ts with a time
window of size S. Here, we consider S > W in order to estimate
long-term performance and robustness to decay of the classifier. A
user may consider different time splits depending on their objec-
tives, provided each split has a significant number of samples. We
emphasize that, although we have the labels of objects in Ts ⊆ D, all
the evaluations and tuning algorithms must assume that labels yi of
objects si ∈ Ts are unknown.

We formalize three rules for avoid-
ing spatio-temporal bias:...

To evaluate performance over time, the test set Ts must be split
into time-slots of size ∆. For example, for a test set time window
of size S = 2 years, we may have ∆ = 1 month. This parameter is
chosen by the user, but it is important that the chosen granularity
allows for a statistically significant number of objects in each test
window [ti, ti + ∆).

We now formalize three constraints that must be enforced when
dividing D into Tr and Ts for a realistic setting that avoids spatio-
temporal experimental bias (Section 5.4). While C1 was proposed in
past work [6, 194], we are the first to propose C2 and C3—which we
show to be fundamental in Section 5.6.

...training data should temporally
precede test data...

C1) Temporal training consistency. All the objects in the training
must be strictly temporally precedent to the testing ones:

time(si) < time(sj), ∀si ∈ Tr, ∀sj ∈ Ts , (5.1)

where si (resp. sj) is an object in the training set Tr (resp. test set
Ts). Eq. 5.1 must hold; its violation inflates the results by including
future knowledge in the classifier (Section 5.4.2).

88 machine learning for security in hostile environments

C2) Temporal gw/mw windows consistency. In every test slot of
size ∆, all test objects must be from the same time window:

tmin
i ≤ time(sk) ≤ tmax

i , ∀sk in time slot [ti, ti + ∆) , (5.2)

where tmin
i = mink time(sk) and tmax

i = maxk time(sk). The same
should hold for the training: although violating Eq. 5.2 in the train-
ing data does not bias the evaluation, it may affect the sensitivity of
the classifier to unrelated artifacts. Eq. 5.2 has been violated in the

...for each test period, objects
should be from the same time
window...

past when goodware and malware have been collected from differ-
ent time windows (e.g., Alg2 [187], re-evaluated in Section 5.6)—if
violated, the results are biased because the classifier may learn and
test on artifactual behaviors that, for example, distinguish good-
ware from malware just by their different API versions.

C3) Realistic malware-to-goodware ratio in testing. Let us de-
fine ϕ as the average percentage of malware in the training data,
and δ as the average percentage of malware in the test data. Let σ̂

be the estimated percentage of malware in the wild. To have a re-
alistic evaluation, the average percentage of malware in the testing
(δ) must be as close as possible to the percentage of malware in the
wild (σ̂), so that:

δ ' σ̂ . (5.3)

For example, we have estimated that in the Android scenario good- ...and the test set should approxi-
mate the expected base rate of the
positive class in the wild.

ware is predominant over malware, with σ̂ ≈ 0.10 (Section 5.3.2).
If C3 is violated by overestimating the percentage of malware, the
results are positively inflated (Section 5.4.3). We highlight that, al-
though the test distribution δ cannot be changed (in order to get
realistic results), the percentage of malware in the training ϕ may
be tuned (Section 5.5.3).

5.5.2 Time-aware Performance Metrics

We propose AUT, a time-aware
metric for comparing different
methods...

We introduce a time-aware performance metric that allows for the
comparison of different classifiers while considering time decay. Let
Θ be a classifier trained on Tr; we capture the performance of Θ for
each time frame [ti, ti + ∆) of the test set Ts (e.g., each month). We
identify two options to represent per-month performance:

• Point estimates (pnt): The value plotted on the Y-axis for xk =

k∆ (where k is the test slot number) computes the performance
metric (e.g., F1-Score) only based on predictions ŷi of Θ and true
labels yi in the interval [W + (k− 1)∆, W + k∆).

• Cumulative estimates (cml): The value plotted on the Y-axis
for xk = k∆ (where k is the test slot number) computes the
performance metric (e.g., F1-Score) only based on predictions ŷi

of Θ and true labels yi in the cumulative interval [W, W + k∆).

Point estimates are always to be preferred to represent the real
performance of an algorithm. The cumulative estimates can be used

limiting experimental bias in ml for security 89

to highlight a smoothed trend and to show overall performance up
to a certain point, but can be misleading if reported on their own
if objects are too sparsely distributed in some test slots ∆. Hence,
we report primarily point estimates in the remainder of the chapter
(e.g., in Section 5.6), while an example of cumulative estimate plots
is reported in Figure 5.6(b). ...which captures the curve of

performance decay over time.To facilitate the comparison of different time decay plots, we
define a new metric, Area Under Time (AUT), the area under the
performance curve over time. Formally, based on the trapezoidal
rule (as in AUC [40]), AUT is defined as follows:

AUT(f , N) =
1

N − 1

N−1

∑
k=1

[f (xk+1) + f (xk)]

2
, (5.4)

where: f (xk) is the value of the point estimate of the performance
metric f (e.g., F1) evaluated at point xk := (W + k∆); N is the num-
ber of test slots, and 1/(N − 1) is a normalization factor so that
AUT ∈ [0, 1]. The perfect classifier with robustness to time decay
in the time window S has AUT = 1. By default, AUT is computed
as the area under point estimates, as they capture the trend of the
classifier over time more closely; if the AUT is computed on cumu-
lative estimates, it should be explicitly marked as AUTcml. As an
example, AUT(F1, 12m) is the point estimate of F1-Score consider-
ing time decay for a period of 12 months, with a 1-month interval.
We highlight that the simplicity of computing the AUT should be
seen as a benefit rather than a drawback; it is a simple yet effective
metric that captures the performance of a classifier with respect to
time decay, de-facto promoting a fair comparison across different
approaches.

AUT(f ,N) is a metric that allows us to evaluate performance f
of a malware classifier against time decay over N time units in
realistic experimental settings—obtained by enforcing C1, C2,
and C3 (Section 5.5.1). The next sections leverage AUT for tun-
ing classifiers and comparing different solutions (Section 5.6).

5.5.3 Tuning Training Ratio

After examining the impact of
altering the malware rate in the
training set...

We propose a novel algorithm that allows for the adjustment of the
training ratio ϕ when the dataset is imbalanced, in order to opti-
mize a user-specified performance metric (F1, Precision, or Recall)
on the minority class, subject to a maximum tolerated error, while
aiming to reduce time decay. The high-level intuition of the impact
of changing ϕ is described in Section 5.4.3. We also observe that ML
literature has shown ROC curves to be misleading on highly im-
balanced datasets [75, 126]. Choosing different thresholds on ROC
curves shifts the decision boundary, but (as seen in the motivating
example of Figure 5.3) re-training with different ratios ϕ (as in our

90 machine learning for security in hostile environments

Algorithm 3: Tuning ϕ.
Input: Training dataset Tr
Parameters: Learning rate µ, target performance P ∈ {F1, Pr, Rec}, max error rate Emax
Output: ϕ∗P, optimal percentage of mw to use in training to achieve the best target performance P subject to E<Emax .

1 Split the training set Tr into two subsets: actual training (ProperTr) and validation set (Val), while enforcing C1, C2, C3

(Section 5.5.1), also implying δ = σ̂
2 Divide Val into N non-overlapped subsets, each corresponding to a time-slot ∆, so that Valarray = [V0, V1, ..., VN]
3 Train a classifier Θ on ProperTr
4 P∗ ← AUT(P,N) on Valarray with Θ
5 ϕ∗P = σ̂
6 for (ϕ = σ̂; ϕ ≤ 0.5; ϕ = ϕ + µ) do
7 Downsample gw in ProperTr so that percentage of mw is ϕ
8 Train the classifier Θϕ on ProperTr with ϕ mw
9 performance Pϕ ← AUT(P, N) on Valarray with Θϕ

10 error Eϕ ← Error rate on Valarray with Θϕ

11 if (Pϕ > P∗) and (Eϕ ≤Emax) then
12 P∗ ← Pϕ

13 ϕ∗P ← ϕ

14 return ϕ∗P;

algorithm) also changes the shape of the decision boundary, better
representing the minority class.

Our tuning algorithm is inspired by one proposed by Weiss and
Provost [309]; they propose a progressive sampling of training ob-
jects to collect a dataset that improves AUC performance of the
minority class in an imbalanced dataset. However, they did not
take temporal constraints into account (Section 5.4.2), and heuristi-
cally optimize only AUC. Conversely, we enforce C1, C2, C3 (Sec- ...we devise an algorithm to find

the optimal rate...tion 5.5.1), and rely on AUT to achieve three possible targets for the
malware class: higher F1-Score, higher Precision, or higher Recall.
Also, we assume that the user already has a training dataset Tr and
wants to use as many objects from it as possible, while still achiev-
ing a good performance trade-off; for this purpose, we perform a
progressive subsampling of the goodware class.

Algorithm 3 formally presents our methodology for tuning the
parameter ϕ to find the value ϕ∗P that optimizes P subject to a max-
imum error rate Emax. The algorithm aims to solve the following
optimization problem:

maximizeϕ{P} subject to: E ≤ Emax , (5.5)

where P is the target performance: the F1-Score (F1), Precision (Pr)
or Recall (Rec) of the malware class; Emax is the maximum tolerated
error; depending on the target P, the error rate E has a different
formulation:

• if P = F1 → E= 1−Acc = (FP + FN)/(TP + TN + FP + FN)

• if P = Rec→ E= FPR = FP/(TN + FP)

• if P = Pr → E= FNR = FN/(TP + FN)

Each of these definitions of E is targeted to limit the error induced
by the specific performance—if we want to maximize F1 for the
malware class, we need to limit both FPs and FNs; if P = Pr, we
increase FNs, so we constrain FNR.

limiting experimental bias in ml for security 91

Algorithm 3 consists of two phases: initialization (lines 1–5) and
grid search of ϕ∗P (lines 6–14). In the initialization phase, the training
set Tr is split into a proper training set ProperTr and a validation set
Val; this is split according to the space-time evaluation constraints
in Section 5.5.1, so that all the objects in ProperTr are temporally
anterior to Val, and the malware percentage δ in Val is equal to σ̂,
the in-the-wild malware percentage. The maximum performance ...which uses grid search to opti-

mize a given performance metric.observed P∗ and the optimal training ratio ϕ∗P are initialized by
assuming the estimated in-the-wild malware ratio σ̂ for training; in
Android, σ̂ ≈ 10% (see Section 5.3.2).

The grid-search phase iterates over different values of ϕ, with a
learning rate µ (e.g., µ = 0.05), and keeps as ϕ∗P the value leading
to the best performance, subject to the error constraint. To reduce
the chance of discarding high-quality points while downsampling
goodware, we prioritize the most uncertain points (e.g., points close
to the decision boundary in an SVM) [250]. The constraint on line 6

(σ̂ ≤ ϕ ≤ 0.5) is to ensure that one does not under-represent the
minority class (if ϕ < σ̂) and that one does not let it become the
majority class (if ϕ > 0.5); also, from Section 5.4.3 it is clear that
if ϕ > 0.5, then the error rate becomes too high for the goodware
class. Finally, the grid-search explores multiple values of ϕ and
stores the best ones. To capture time-aware performance, we rely on
AUT (Section 5.5.2), and the error rate is computed according to the
target P (see above). Tuning examples are in Section 5.6.

5.5.4 Implementation of the Tesseract Library

To promote the adoption of our
framework we release Tesseract...

We develop Tesseract, an open-source Python framework that
enforces constraints C1, C2, and C3 (Section 5.5.1), computes AUT
(Section 5.5.2), and can train a classifier with our tuning algorithm
(Section 5.5.3). Tesseract operates as a traditional Python ML li-
brary but, in addition to features matrix X and labels y, it also takes
as input the timestamp array t containing dates for each object.

Tesseract is designed to integrate easily with common work-
flows, in particular, the API design of Tesseract is heavily in-
spired by and fully compatible with the popular machine learning
libraries SCIKIT-LEARN and TensorFlow’s KERAS API. As a result,
many of conventions and concepts in Tesseract should be familiar
to users of those libraries.

The goal of Tesseract is to ensure a fair, time-aware evalua-
tion of security classifiers. To achieve this, Tesseract will enforce
proper temporal and spatial constraints to prevent results becoming
affected by experimental bias. As classifiers grow in complexity by
combining multiple machine learning techniques, it becomes in-
creasingly likely that these constraints will be violated. Tesseract

aims to reduce the burden on the system designer by keeping track
of these properties at each stage of the experiment pipeline.

92 machine learning for security in hostile environments

Evaluation Workflow. Tesseract divides the workflow into
stages (Figure 5.5). Firstly, the dataset is ordered chronologically
and divided into a single training set and multiple test sets. Next,

...a modular Python library for
performing evaluations free of
spatio-temporal bias.

execution enters the time-aware evaluation cycle where each itera-
tion of the cycle processes the subsequent set of test objects. The
evaluation cycle is composed of multiple stages centered around
the standard “training” and “prediction” procedures. The stage
preceding training enables adjustments to be made to the training
set while the later stages allow for policies for reacting to the re-
sults before the cycle repeats. Finally, once all test objects have been
processed, the complete results are consolidated and presented.

Modular Design. Tesseract is composed in a modular fash-
ion, to reflect the different stages of the evaluation cycle. Different
phases of the cycle are represented by subclasses of Stage, which
can themselves be subclassed to implement specific learning strate-
gies. Instances of these subclasses can then be injected into the
function fit_predict_update() which will activate them appropri-
ately throughout the evaluation or deactivate them according to a
given schedule (a boolean array) attached to the superclass. Alter-
natively, any component from the framework can be appropriately
selected and used in conjunction with other libraries or method-
ologies. We hope the ease of writing plugins for different stages
will encourage further experimentation with novel drift mitigation
strategies. The following paragraphs further explore the core stages
of Tesseract’s workflow.

Tesseract makes it easy to tempo-
rally partition data...

Temporal Awareness. While a single training or test example is
typically represented as a feature set X and an output variable, or
ground truth, y, Tesseract also expects a timestamp t. This allows
Tesseract to enforce temporal constraints when partitioning the
dataset; e.g., for training, validation or testing. Tesseract parti-
tions test sets further into testing periods. Each period contains test
objects covering a particular timespan specified in days, weeks,
months, quarters or years.

Time-aware operations are implemented in temporal.py which
handles the various corner cases and complications that occur when
working with time deltas. A notable function from the module is
time_aware_train_test_split() that performs dataset partitioning
given a time period length, granularity and an optional start date,
such that all test periods are processed in chronological order and
all are temporally posterior to the training set.

...and fix the class ratio of the
training and test sets.

Pre-train Stages. Before training the classifier it can be beneficial
to make adjustments to the training set. For example, altering the
class balance of the training set can be used to tune a classifier in
order to make it more or less receptive to a particular class. This is
especially useful in many security applications where the class of
interest—often malicious—is also the minority class.

limiting experimental bias in ml for security 93

Time-aware
Evaluation

Time

Sc
or

e

OutputsInputs

X
y
t

Inputs
Rebalance Fit Predict Reject Select

Pre-train Post-prediction Outputs

Testing period 1,…,N

Time-aware
Split

X
y
t

TRAIN

TRAIN

TRAIN

Figure 5.5: Tesseract work-
flow and the evaluation cycle.

The module spatial.py contains downsample_set() to reduce the
majority class until the desired class balance is achieved, as well
as an implementation of our tuning algorithm (Section 5.5.3) in
search_optimal_train_ratio(). Custom methods for these adjust-
ments can be injected by subclassing the Rebalancer class and
overriding its alter() method which will then be invoked before
training on each cycle iteration.

The function downsample_set() can also be used to ensure the
class balance of each testing period is realistic. For this, spatial.
py also includes assert_class_distribution() to enforce C3 within
some tolerance bound.

A flexible evaluation cycle with
plugin support...Train and Predict Stages. During training, the classifier estimates

the relationship between the features and the output variables. By
default, Tesseract invokes the fit function on the given model,
however, custom algorithms can be injected into the fitting stage to
aid interoperability or for experimentation.

In the next stage, the classifier attempts to predict correct classes
for the test objects in the current period. Tesseract will search for
typical classification functions—prioritizing those which output raw
scores (e.g., distance from hyperplane) and thus are more flexible
for calculating metrics. However, custom decision functions can
also be passed to the framework to override the default behavior.

Post-classification Stages. In Section 5.7.1 we discuss techniques
for delaying time decay: incremental retraining, classification with
rejection [139], and active learning [250]. In these approaches, ex-
amples may be rejected or manually labeled. In most cases, there
is an associated quarantine cost, as the associated manual inspection
consumes time and resources. Tesseract tracks quarantine costs
as these are important for comparing delay strategies and can also
signal the onset of concept drift and the aging of the model [139].

...makes it easy to extend Tesser-
act to test novel strategies for
mitigating performance decay.The modules rejection.py and selection.py provide hooks for

novel query and reject strategies to be easily plugged into the eval-
uation cycle. Policies for rejection, while optional, can be imple-
mented by subclassing the Rejector stage class and overriding the
reject() method.

94 machine learning for security in hostile environments

Other delay strategies are typically activated after rejection and
before the rebalancing and retraining of the next evaluation cycle.
Active learning techniques can be implemented in Tesseract by
subclassing the Selector stage and overriding the query() method.
Similarly to Rejector objects, all Selector stages will keep track
of costs they incur. Tesseract includes some useful implemen-
tations for this stage, for example UncertaintySamplingSelector.
Incremental retraining can be simulated employed by using the
FullRetrainingSelector.

Metrics and Output. Tesseract maintains a set of metrics cal-
culated during each iteration of the evaluation cycle. These range
from the total positive and negative objects to metrics such as Pre-
cision, Recall, and AUC. As Tesseract aims to encourage com-
parable and reproducible evaluations, we include functions for
visualizing classifier assessments and for measuring the classifier
robustness over a given time period with respect to each metric.

5.6 Tesseract: Revealing Hidden Performance

Here, we show how our methodology can reveal hidden perfor-
mance of Alg1 [19], Alg2 [187], and DL [118] (Section 5.3.1), and
their robustness to time decay.

A thorough evaluation of the
reference algorithms reveals more
realistic performances...

Figure 5.6 reports several performance metrics of the three algo-
rithms as point estimates over time. The X-axis reports the testing
slots in months, whereas the Y-axis reports different scores be-
tween 0 and 1. The areas highlighted in blue correspond to the
AUT(F1, 24m). The black dash-dotted horizontal lines represent the
best F1-Score from the original papers [19, 187, 118], correspond-
ing to results obtained with 10 hold-out random splits for Alg1,
10-fold CV for Alg2, and random split for DL; all these settings
are analogous to k-fold from a temporal bias perspective, and vio-
late both C1 and C2. The red dashed horizontal lines correspond to
10-fold F1-Score obtained on our dataset, which satisfies C3.

Differences in 10-fold F1-Score. We discuss and motivate the dif-
ferences between the horizontal lines representing original papers’
best F1-Score and replicated 10-fold F1-Score. The 10-fold F1-Score
of Alg1 is close to the original paper [19]; the difference is likely
related to the use of a different, more recent dataset. The 10-fold
F1-Score of Alg2 is much lower than the one in the paper. We ver-
ified that this is mostly caused by violating C3: the best F1-Score
reported in [187] is on a setting with 86% malware—hence, spatial
bias increases even 10-fold F1-Score of Alg2. Also violating C2
tends to inflate the 10-fold performance as the classifier may learn
artifacts. The 10-fold F1-Score in DL is instead slightly higher than
in the original paper [118]; this is likely related to a hyperparameter
tuning in the original paper that optimized Accuracy (instead of

limiting experimental bias in ml for security 95

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg1

Recall (gw)
Precision (gw)
F1 (gw)
Recall (mw)
Precision (mw)
F1 (mw)
F1 (10-fold, our dataset)
F1 (original paper)

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg2

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DL

(a) Point estimates

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg1

Recall (gw)
Precision (gw)
F1 (gw)
Recall (mw)
Precision (mw)
F1 (mw)
F1 (10-fold, our dataset)
F1 (original paper)

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg2

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DL

(b) Cumulative estimates

Figure 5.6: Time decay of
Alg1 [19], Alg2 [187], and
DL [118]—with AUT(F1, 24m)

of 0.58, 0.32, and 0.64, respec-
tively. Training and test sets
with 10% malware.

F1-Score), which is known to be misleading in imbalanced datasets.
From these results, we can observe that even if an analyst wants
to estimate what the performance of the classifier would be in the
absence of concept drift (i. e., where objects coming from the same
distribution of the training dataset are received by the classifier),
they still need to enforce C2 and C3 while computing 10-fold CV to
obtain valid results.

...with much weaker results once
sources of bias are removed...

Violating C1 and C2. Removing the temporal bias reveals the
real performance of each algorithm in the presence of concept drift.
The AUT(F1, 24m) quantifies such performance: 0.58 for Alg1, 0.32

for Alg2 and 0.64 for DL. In all three scenarios, the AUT(F1, 24m)

is lower than 10-fold F1-Score as the latter violates constraint C1

and may violate C2 if the dataset classes are not evenly distributed
across the timeline (Section 5.5).

...and that DL is most robust
to time decay in the long term,
despite reporting the worst perfor-
mance originally [118].

Best performing algorithm. Tesseract shows a counterintuitive
result: the algorithm that is most robust to time decay and has the
highest performance over the 2 years testing is the DL algorithm
(after removing space-time bias), although for the first few months
Alg1 outperforms DL. Given this outcome, one may prefer to use
Alg1 for the first few months and then DL, if retraining is not
possible (Section 5.7). We observe that this strongly contradicts

96 machine learning for security in hostile environments

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg1

F1 (mw, σ̂)
F1 (mw, ϕ∗)
F1 (gw, σ̂
F1 (gw, ϕ∗)

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg2

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DL

Figure 5.7: Improvement ob-
tained by applying ϕ∗F1

= 25%
to both Alg1 and DL, and
ϕ∗F1

= 50% to Alg2. ϕ∗F1
values

are obtained with Algorithm 3

on the training set (split 2:1
training to validation).

the performance obtained in the presence of temporal and spatial
bias. In particular, if we only looked at the best F1-Score reported
in the original papers, Alg2 would have been the best algorithm
(because spatial bias was present). After enforcing C3, the k-fold on
our dataset would have suggested that DL and Alg1 have similar
performance (because of temporal bias). After enforcing C1, C2 and
C3, the AUT reveals that DL is actually the algorithm most robust
to time decay.

Different robustness to time decay. Given a training dataset,
the robustness of different ML models against performance de-
cay over time depends on several factors. Although more in-depth
evaluations would be required to understand the theoretical moti-
vations behind the different robustness to time decay of the three
algorithms in our setting, we hereby provide insights on possible
reasons. The performance of Alg2 is the fastest to decay likely be-
cause its feature engineering [187] may be capturing relations in
the training data that quickly become obsolete at test time to sep-
arate goodware from malware. Although Alg1 and DL take as
input the same feature space, the higher robustness to time decay
of DL is likely related to feature representation in the latent feature
space automatically identified by deep learning [118], which appears
to be more robust to time decay in this specific setting. Recent re-
sults have also shown that linear SVM tends to overemphasize a
few important features [191]—which are the few most effective on
the training data, but may become obsolete over time. We remark
that we are not claiming that deep learning is necessarily more
robust to time decay than traditional ML algorithms. Instead, we
demonstrate how, in this specific setting, Tesseract allowed us to
highlight higher robustness of DL [118] against time decay; how-
ever, the prices to pay to use DL are lower explainability [235, 122]
and higher training time [118].

limiting experimental bias in ml for security 97

Tuning algorithm. We now evaluate whether our tuning (Algo-
rithm 3 in Section 5.5.3) improves robustness to time decay of a
malware classifier for a given target performance. We first aim to
maximize P = F1-Score of malware class, subject to Emax= 10%.
After running Algorithm 3 on Alg1 [19], Alg2 [187] and DL, we
find that ϕ∗F1

= 0.25 for Alg1 and DL, and ϕ∗F1
= 0.5 for Alg2.

We perform more tuning with our
class balance tuning algorithm...

Figure 5.7 reports the improvement on the test performance of ap-
plying ϕ∗F1

to the full training set Tr of 1 year. We remark that the
choice of ϕ∗F1

uses only training information (see Algorithm 3) and
no test information is used—the optimal value is chosen from a
4-month validation set extracted from the 1 year of training data;
this is to simulate a realistic deployment setting in which we have
no a priori information about testing. Figure 5.7 shows that our
approach for finding the best ϕ∗F1

improves the F1-Score on mal-
ware at test time, at the cost of slightly reduced goodware perfor-
mance. Table 5.3 shows details of how total FPs, total FNs, and
AUT changed by training Alg1, Alg2, and DL with ϕ∗F1

, ϕ∗Prec, and
ϕ∗Rec instead of σ̂. These training ratios have been computed subject
to Emax = 5% for ϕ∗Rec, Emax = 10% for ϕ∗F1

, and Emax = 15% for
ϕ∗Prec; the difference in the maximum tolerated errors is motivated
by the class imbalance in the dataset—which causes lower FPR
and higher FNR values (see definitions in Section 5.5.3), as there is
much more goodware than malware. As expected (Section 5.4.3),

...showing that it can further
improve robustness against drift.

Table 5.3 shows that when training with ϕ∗F1
Precision decreases

(FPs increase) but Recall increases (because FNs decrease), and the
overall AUT increases slightly as a trade-off. A similar reasoning
follows for the other performance targets. We observe that the AUT
for Precision may slightly differ even with a similar number of total
FPs—this is because AUT(Pr, 24m) is sensitive to the time at which
FPs occur; the same observation is valid for total FNs and AUT
Recall. After tuning, the F1 performance of Alg1 and DL become
similar, although DL remains higher in terms of AUT. The tuning
improves the AUT(F1, 24m) of DL only marginally, as DL is already
robust to time decay even before tuning (Figure 5.6).

The next section focuses on the two classifiers less robust to
time decay, Alg1 and Alg2, to evaluate with Tesseract the
performance-cost trade-offs of budget-constrained strategies for
delaying time decay.

5.7 Delaying Time Decay

We have shown how enforcing constraints and computing AUT
with Tesseract can reveal the real performance of Android mal-
ware classifiers (Section 5.6). This baseline AUT performance (without
retraining) allows users to evaluate the general robustness of an
algorithm to time decay. A classifier may be retrained to update its
model. However, manual labeling is costly (especially in the Android
malware setting), and the ML community [250, 30] has worked

98 machine learning for security in hostile environments

Algorithm ϕ FP FN
AUT(P, 24m)

F1 Pr Rec

Alg1 [19]

10% (σ̂) 965 3,851 0.58 0.75 0.48

25% (ϕ∗F1
) 2,156 2,815 0.62 0.65 0.61

10% (ϕ∗Pr) 965 3,851 0.58 0.75 0.48

50% (ϕ∗Rec) 3,728 1,793 0.64 0.58 0.74

Alg2 [187]

10% (σ̂) 274 5,689 0.32 0.77 0.20

50% (ϕ∗F1
) 4,160 2,689 0.53 0.50 0.60

10% (ϕ∗Pr) 274 5,689 0.32 0.77 0.20

50% (ϕ∗Rec) 4,160 2,689 0.53 0.50 0.60

DL [118]

10% (σ̂) 968 3,291 0.64 0.78 0.53

25% (ϕ∗F1
) 2,284 2,346 0.65 0.66 0.65

10% (ϕ∗Pr) 968 3,291 0.64 0.78 0.53

25% (ϕ∗Rec) 2,284 2,346 0.65 0.66 0.65

Table 5.3: Test AUT perfor-
mance over 24 months, train-
ing with σ̂, ϕ∗F1

, ϕ∗Pr and ϕ∗Rec.

extensively on mitigation strategies—e.g., to identify a limited num-
ber of best objects to label (active learning). While effective at post-
poning time decay, strategies like these can further complicate the
fair evaluation and comparison of classifiers.

With a stable evaluation setup
we can now compare different
defenses...In this section, we show how Tesseract can be used to compare

and evaluate the trade-offs of different budget-constrained strate-
gies to delay time decay. Since DL has shown to be more robust to
time decay (Section 5.6) than Alg1 and Alg2, in this section we fo-
cus our attention on these to show the performance-cost trade-offs
of different drift mitigations.

5.7.1 Delay Strategies

We do not propose novel delay strategies, but instead focus on how
Tesseract allows for the comparison of some popular approaches
to mitigating time decay. This shows researchers how to adopt
Tesseract for the fair comparison of different approaches when
proposing novel solutions to delaying time decay under budget
constraints. We now summarize the delay strategies we consider
and show results on our dataset.

...such as incremental retraining...

Incremental retraining. We first consider an approach that tends
towards an “ideal” performance P∗: all test objects are periodi-
cally labeled manually, and the new knowledge introduced to the
classifier via retraining. More formally, the performance of month
mi is determined from the predictions of a model Θ trained on:
Tr ∪ {m0, m1, ..., mi−1}, where {m0, m1, ..., mi−1} are test objects,
which are manually labeled. The dashed gray line represents the
F1-Score without incremental retraining (i. e., stationary training).
Although incremental retraining generally achieves close to optimal
performance throughout the whole test period, it also incurs the

limiting experimental bias in ml for security 99

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg1

F1 (10-fold CV)

F1 (no update)

Recall (mw)

Precision (mw)

F1 (mw)

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg2

Figure 5.8: Delaying time
decay: performance with incre-
mental retraining.

highest labeling cost L and is often infeasible in realistic deploy-
ments. Even assuming a reliance on VirusTotal, there is still an API
usage cost associated with higher query rates and the approach
may be ill-suited to other security domains. Figure 5.8 shows the
performance of Alg1 and Alg2 with monthly retraining.

...active learning...

Active learning. Active Learning (AL) is an area of machine
learning that studies query strategies: strategies for selecting a sub-
set of test objects (with unknown labels) that, if manually labeled
and included in the training set, should be the most valuable for
updating the classification model [250].

We evaluate the impact of one of the most popular active learn-
ing strategies: uncertainty sampling [250, 194]. This query strategy
selects the points the classifier is least certain about, and uses them
for retraining—the intuition is that the most uncertain elements are
the ones that may be indicative of concept drift, and new, correct
knowledge about them may better inform the decision boundaries.
This intuition is clear for an algorithm such as linear SVM where
the least certain points are those closest to the decision boundary.
In a linear SVM the slope of the decision boundary greatly depends
on the points that are closest to it, the support vectors [40]; all points
further away are classified with higher confidence, hence have lim-
ited effect on the slope of the hyperplane.

More formally, in binary classification uncertainty sampling
gives a score x∗LC (where LC stands for Least Confident) to each
sample [250]; this score is defined as follows:2 2 In multi-class classification, there is a

query strategy based on the entropy of
the prediction scores array; in binary
classification, the entropy-based query
strategy is proven to be equivalent to
the LC strategy [250].

x∗LC := argmaxx{ 1− PΘ(ŷ|x) } , (5.6)

where ŷ := argmaxyPΘ(y|x) is the class label with the highest pos-
terior probability according to classifier Θ. In a binary classification
task, the maximum uncertainty for an object is achieved when its
prediction probability is equal to 0.5 for both classes (i. e., equal
probability of being goodware or malware). The test objects are
sorted by descending order of uncertainty x∗LC, and the top-n most

100 machine learning for security in hostile environments

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg1

25%

10%

5%

1%

0%

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg2

(a) F1-Score

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg1

25%

10%

5%

1%

0%

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg2

(b) Precision

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg1

25%

10%

5%

1%

0%

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg2

(c) Recall

Figure 5.9: Delaying time de-
cay: performance with active
learning based on uncertainty
sampling.

uncertain are selected to be labeled for retraining the classifier.
Depending on the percentage of manually labeled points, each

scenario corresponds to a different labeling cost L. The labeling
cost L is known a priori since it is user specified according to their
available resources.

We apply active learning with uncertainty sampling in a time-
aware scenario, and choose a percentage of objects to retrain per
month. Figure 5.9 reports the results for different percentages of
objects labeled per month. We observe that even with 1% AL, the
performance already improves significantly.

...and classification with rejection.

Classification with rejection. Malware evolves rapidly over time,
so if the classifier is not up to date, the decision region may no
longer be representative of new objects. Another approach, or-
thogonal to active learning, is to include a reject option as a possible
classifier outcome [107, 139]. This discards the most uncertain pre-
dictions to a quarantine area for manual inspection at a future date.
At the cost of rejecting some objects, the overall performance of the
classifier (on the remaining objects) increases. The intuition is that
in this way only high confidence decisions are taken into account.
Again, although performance P improves, there is a quarantine cost
Q associated with it; in this case, unlike active learning, the cost is
not known a priori because, in traditional classification with rejec-
tion, a threshold on the classifier confidence is applied [107, 139].
While we assess a simple method here, Chapter 6 examines classifi-
cation with rejection methods in greater detail.

Figure 5.10 reports the performance of Alg1 and Alg2 after
applying a reject option based on Jordaney et al. [139]. In partic-
ular, we use the third quartile of probabilities of incorrect predic-
tions as the rejection threshold [139]. The gray histograms in the
background report the number of rejected objects per month. The
second year of testing has more rejected objects for both Alg1 and
Alg2, although Alg2 overall rejects more objects.

5.7.2 Analysis of Delay Methods

To quantify performance-cost trade-offs of methods to delay time
decay without changing the algorithm, we characterize the follow-

limiting experimental bias in ml for security 101

1 4 7 10 13 16 19 22

Testing period (month)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

#
Q

u
aran

tin
ed

1 4 7 10 13 16 19 22

Testing period (month)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

#
Q

u
aran

tin
ed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (no rejection)

Recall (gw)

Precision (gw)

F1 (gw)

Recall (mw)

Precision (mw)

F1 (mw)

Alg1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg2

Figure 5.10: Delaying time
decay: performance with clas-
sification with rejection.

ing three elements: Performance (P), the performance measured
in terms of AUT to capture robustness against time decay (Sec-
tion 5.5.2); Labeling Cost (L), the number of test objects (if any) that
must be labeled—the labeling must occur periodically (e.g., every
month), and is particularly costly in the malware domain as manual
inspection requires many resources (infrastructure, time, expertise,
etc)—for example, Miller et al. [194] estimate an average company
could manually label 80 objects per day; Quarantine Cost (Q), the
number of objects (if any) rejected by the classifier—these must be
manually verified, so there is a cost for leaving them in quarantine.

We can clearly compare the cost
and performance tradeoffs...

Table 5.4, utilizing AUT(F1,24m) while enforcing our constraints,
summarizes labeling cost L, quarantine cost Q, and two perfor-
mance columns P, corresponding to training with σ̂ and ϕ∗F1

(Sec-
tion 5.5.3), respectively. In each row, we highlight in orange and
purple cells the column with the highest AUT for Alg1 and Alg2,
respectively. Table 5.4 allows us to: (i) examine the effectiveness of
the training ratios ϕ∗F1

and σ̂; (ii) analyze the AUT performance im-
provement and the costs for delaying time decay; (iii) compare the
performance of Alg1 and Alg2 in different settings.

First, let us compare ϕ∗F1
with σ̂. The first row of Table 5.4 rep-

resents the scenario in which the model is trained only once at the
beginning—the scenario for which we originally designed Algo-
rithm 3 (Section 5.5.3 and Figure 5.7). Without methods to delay
time decay, ϕ∗F1

achieves better performance than σ̂ for both Alg1

and Alg2 at no cost. In all other configurations, we observe that
training ϕ = ϕ∗F1

always improves performance for Alg2, whereas
for Alg1 it is slightly advantageous in most cases except for rejec-
tion and AL 1%—in general, the performance of Alg1 trained with
ϕ∗F1

and σ̂ is consistently close. The intuition is that ϕ∗F1
and σ̂ are

also close for Alg1: when applying the AL strategy, we re-apply
Algorithm 3 at each step and find that the average ϕ∗F1

≈ 15% for
Alg1, which is close to 10% (i. e., σ̂). On the other hand, for Alg2

the average ϕ∗F1
≈ 50%, which is far from σ̂ and improves all results

significantly. We can conclude that our tuning algorithm is most
effective when it finds a ϕ∗P that differs from the estimated σ̂.

Then, we analyze the performance improvement and related
cost of using delay methods. The improvement in F1-Score granted

102 machine learning for security in hostile environments

Costs Performance

L Q
P : AUT(F1, 24m)

ϕ = σ̂ ϕ = ϕ∗F1

Method Alg1 Alg2 Alg1 Alg2 Alg1 Alg2 Alg1 Alg2

No update 0 0 0 0 0.577 0.317 0.622 0.527

Rejection (σ̂) 0 0 10,283 3,595 0.717 0.280 – –
Rejection (ϕ∗F1

) 0 0 10,576 24,390 – – 0.704 0.683

AL: 1% 709 709 0 0 0.708 0.456 0.703 0.589

AL: 2.5% 1,788 1,788 0 0 0.738 0.509 0.758 0.667

AL: 5% 3,589 3,589 0 0 0.782 0.615 0.784 0.680

AL: 7.5% 5,387 5,387 0 0 0.793 0.641 0.801 0.714

AL: 10% 7,189 7,189 0 0 0.796 0.656 0.802 0.732

AL: 25% 17,989 17,989 0 0 0.821 0.674 0.823 0.732

AL: 50% 35,988 35,988 0 0 0.817 0.679 0.828 0.741

Inc. retrain 71,988 71,988 0 0 0.818 0.679 0.830 0.736

Table 5.4: Performance-cost
comparison of delay methods.

by our algorithm comes at no labeling or quarantine cost. We can
observe that one can improve the in-the-wild performance of the
algorithms at some cost L or Q. It is important to observe that
objects discarded or to be labeled are not necessarily malware;
they are just the objects most uncertain according to the algorithm,
which the classifier may have likely misclassified. The labeling ...between different algorithms and

mitigation strategies.costs L for Alg1 and Alg2 are identical (same dataset); in AL, the
percentage of retrained objects is user-specified and fixed.

Finally, Table 5.4 shows that Alg1 consistently outperforms
Alg2 on F1 for all performance-cost trade-offs. This confirms the
trend seen in the realistic settings of Table 5.2.

This section shows that Tesseract is helpful to both researchers
and industrial practitioners. Practitioners need to estimate the per-
formance of a classifier in the wild, compare different algorithms,
and determine resources required for L and Q. For researchers, it
is useful to understand how to reduce costs L and Q while improv-
ing performance P through comparable, unbiased evaluations. The
problem is challenging, but we hope that releasing Tesseract’s
code fosters further research and widespread adoption.

5.8 Beyond Android Malware

Although we applied Tesseract to the Android domain, our
methodology is general and can be immediately applied to any
machine learning-driven security domain to achieve an evaluation
without spatio-temporal bias. However, our methodology does
require some domain-specific parameters in order to reflect re-
alistic conditions, namely access to large timestamped datasets,
knowledge of realistic class ratios, and code or sufficient details to
reproduce baselines. This is not a weakness of our work, but rather
an expected requirement.

We identify numerous constraint
violations across 36 papers from
the community...

As further evidence to motivate the adoption of realistic eval-
uation settings, we conduct a survey of security detection papers
across a 10 year period, from 2011 to 2018. The study analyzes the

limiting experimental bias in ml for security 103

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C3

C2

C1

25

4

2 3

3

6

33

32

Not violated Does not apply Unclear from text Violated

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Figure 5.11: Stacked bar chart
showing constraints violated
by each of the 36 papers an-
alyzed. The width of each
bar shows the proportion of
papers that violated each con-
straint while the number at the
center of each bar shows the
cardinality of each group.

evaluation setup of 36 papers, including 15 papers published at
ACM CCS, IEEE S&P, USENIX Security, and NDSS—the top-4 con-
ferences for security-related research in our community. Figure 5.12

shows a breakdown of the papers by year of publication.
The survey covers Alg1 [19], Alg2 [187], DL [119], and addi-

tional papers from the Android domain [109, 277, 276, 55, 74, 246,
329]; other malware domains such as Windows [245, 71, 281, 188,
46, 286, 254], PDF [271, 54, 264, 164], malicious JavaScript [68, 70,
236, 128], and ActionScript [208]; and other tasks such as malicious
URL detection [274, 45], social media abuse prevention [42, 269],
traffic analysis [225], vulnerability discovery [172], game bot de-
tection [166], bulletproof hosting [9], protocol tunneling [29], and
online scam detection [149].

The aggregated results are shown in Figure 5.11. A bar’s color
indicates whether a constraint (C1, C2, or C3) was violated in the
evaluation, and the width shows the proportion of papers under
that categorization. The number of papers affected is marked at the
center of each bar.

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 5.12: Distribution of pa-
pers per year for the 36 papers
in this survey.

The results show that a great majority of previous work has been
affected by temporal bias, with 89% and 92% of papers violating
C1 and C2, respectively. In particular, it could not be confirmed for
any of the papers that C2 was not violated, due to a lack of clarity
regarding dataset composition in three of the works.

While spatial bias is less prevalent, up to a quarter of papers
surveyed may have suffered from the issue, and we were able to
positively identify C3 violations in 17% of the papers.

...demonstrating that spatio-
temporal bias is not confined to
our Android malware case studies.These results indicate that experimental bias has been endemic in

ML-based security evaluations, affecting many detection problems
tackled by the security community. All but two papers violate at
least one constraint, and for those two papers it was not clear from
the text if C2 was or was not violated.

Remark. All of the papers included in this survey provide
valuable insights, and the presence of bias does not necessarily
invalidate their contributions. Our aim is not to blame specific
researchers, but to help raise awareness and provide solutions
for these experimental issues.

104 machine learning for security in hostile environments

5.9 Tesseract Operation and Limitations

We now discuss guidelines, our assumptions, and how we address
limitations of our work.

Actionable points on Tesseract. It is relevant to discuss how
both researchers and practitioners can benefit from Tesseract

and our findings. A baseline AUT performance (without classifier
retraining) allows users to evaluate the general robustness of an
algorithm to performance decay (Section 5.5.2). We demonstrate
how Tesseract can reveal true performance and provide coun-
terintuitive results (Section 5.6). Robustness over extended time
periods is practically relevant for deployment scenarios without
the financial or computational resources to label and retrain often.
Even with retraining strategies (Section 5.7), classifiers may not
perform consistently over time. Manual labeling is costly, and the
ML community has worked on mitigation strategies to identify a
limited number of best objects to label (e.g., active learning [250]). Tesseract is flexible and aims

to be useful to both academic
researchers and industry practi-
tioners.

Tesseract takes care of removing spatio-temporal bias from evalu-
ations, so that researchers can focus on the proposal of more robust
algorithms (Section 5.7). In this context, Tesseract allows for the
creation of comparable baselines for algorithms in a time-aware
setting. Moreover, Tesseract can be used with different time gran-
ularities, provided each period has a significant number of samples.
For example, if researchers are interested in increasing robustness
to decay for the upcoming 3 months, they can use Tesseract to
produce bias-free comparisons of their approach with prior re-
search, while considering time decay.

Choosing time granularity (∆). Choosing the length of the time
slots (i. e., time granularity) largely depends on the sparseness of
the available dataset: in general, the granularity should be chosen
to be as small as possible, while containing a statistically signifi-
cant number of samples—as a rule of thumb, we keep the buckets
large enough to have at least 1000 objects, which in our case leads
to a monthly granularity. If there are restrictions on the number of
time slots that can be considered (perhaps due to limited processing
power), a coarser granularity can be used; however if the granular-
ity becomes too large then the true trend might not be captured. Different domains, datasets, and

design goals will have their own
individual requirements.Identifying domain-specific malicious prevalence σ̂. In the An-

droid landscape, we assume that σ̂ is around 10% (Section 5.3.2).
Correctly estimating the malware percentage in the testing dataset
is a challenging task and we encourage further representative mea-
surement studies [173, 294] and data sharing to obtain realistic
experimental settings.

Label accuracy. We assume goodware and malware labels in the
dataset are correct (Section 5.3.3). Miller et al. [194] found that

limiting experimental bias in ml for security 105

AVs sometimes change their outcome over time: some goodware
may eventually be tagged as malware. However, they also found
that VirusTotal detections stabilize after one year; since we are
using observations up to Dec 2016, we consider VirusTotal’s labels
as reliable. In the future, we may integrate approaches for noisy
oracles [82], which assume some observations are mislabeled.

Timestamps accuracy. It is important to consider that some times-
tamps in a public dataset could be incorrect or invalid. In this chap-
ter, we rely on the public AndroZoo dataset maintained at the Uni-
versity of Luxembourg, and we rely on the dex_date attribute as
the approximation of an observation timestamp, as recommended
by the dataset creators [8]. We further verified the reliability of
the dex_date attribute by re-downloading VirusTotal [115] reports
for 25K apps3 and verifying that the first_seen attribute always 3 We download only 25K VT reports

(corresponding to about 20% of our
dataset) due to the limitations of our
VirusTotal API quota.

matched the dex_date within our time span. In general, we rec-
ommend performing some sanitization of a timestamped dataset
before performing any analysis on it: if multiple timestamps are
available for each object, consider the most reliable timestamp you
have access to (e.g., the timestamp recommended by the dataset cre-
ators, or the VirusTotal’s first_seen attribute) and discard objects
with “impossible” timestamps (e.g., with dates which are either too
old or in the future), which may be caused by incorrect parsing or
invalid values of some timestamps. To improve trustworthiness of
the timestamps, one could verify whether a given object contains
time inconsistencies or features not yet available when the app was
released [170]. We encourage the community to promptly notify
dataset maintainers of any date inconsistencies.

The ultimate reliability of different
timestamp sources remains an
open question.

Resilience of malware classifiers. In our study, we analyze three
recent high-profile classifiers. One could argue that other classifiers
may show consistently high performance even with space-time
bias eliminated. And this should indeed be the goal of research on
malware classification. Tesseract provides a mechanism for an
unbiased evaluation that we hope will support this kind of work.

Adversarial ML. Adversarial ML focuses on perturbing train-
ing or test inputs to compel a classifier to make incorrect predic-
tions [34]. As described in Chapter 3, in security we can view con-
cept drift as an emergent phenomenon largely driven by adversarial
activity. While defenses against adversarial examples remain an
open problem, the experimental bias we describe in this chapter—
endemic in Android malware classification—must be addressed
prior to realistic evaluations of adversarial mitigations.

106 machine learning for security in hostile environments

Security problem,
e.g. novel attacks

Security solution,
e.g. learning-based IDS

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

Data collection
and labeling

Model design
and learning Performance evaluation Model

deployment

P1

P2

Sampling bias

Label inaccuracy

P3

P4

Data snooping

False causality

P5 Biased parameters

P6

P7

Inappropriate baselines

Inappropriate measures

P8 Base rate fallacy

P9

P10

Lab-only evaluation

Inappropriate threat model

Data collection
and labeling

System design
and learning

Performance
evaluation

Deployment and
operation

Security problem,
e.g., novel attacks

Security solution,
e.g., learning-based IDS

Machine learning workflow

Common
pitfalls

Figure 5.13: Common pitfalls
of machine learning in com-
puter security.

5.10 Other Sources of Experimental Bias in ML

Beyond spatio-temporal biases,
evaluations can suffer from more
general sources of bias...

Aside from the spatio-temporal bias we have discussed in depth,
there are other sources of bias that can affect machine learning-
based experiments. For completeness, we here describe 10 pitfalls
which have afflicted machine learning-based security research in
the past decade. With a few exceptions, these biases can typically
apply to all machine learning studies, although they often have
specific implications when applied to the security domain.

Unlike the spatio-temporal bias, these pitfalls may not necessar-
ily be caused by specific properties of the hostile environment or
of the malicious class. However, it is necessary to address as many
sources of bias as possible in order to have a stable and consistent
evaluation design to assess security detection systems in realistic
settings. For this reason, we offer insight into the 10 pitfalls here.

5.10.1 Pitfall Definitions and Recommendations

...affecting different stages of an
ML pipeline.

We describe ten common pitfalls that occur frequently in security
research. Although some of these pitfalls may seem obvious at first
glance, they are rooted in subtle mistakes that are widespread in
security research—even in papers presented at top conferences
(see Section 5.10.3).

As visualized in Figure 5.13, the pitfalls can be divided into
categories based on which phase of the machine learning pipeline
they pertain to: data collection and labeling (P1 and P2), system design
and learning (P3, P4, P5), performance evaluation (P6, P7, P8), and
deployment and operation (P9 and P10).

For each pitfall, we provide a short description and discuss its
impact on the security domain, as well as providing some recom-
mendations for mitigation. For deeper analysis into the prevalence
and impact of each pitfall, we refer the reader to Arp et al. [20].

P1) Sampling Bias. The collected data does not sufficiently represent the
true data distribution of the underlying security problem [67, 1, 62]. Sampling bias occurs when the

distribution of a dataset does not
effectively represent that expected
in the wild...

Description. With a few rare exceptions, researchers develop their
learning-based approaches without exact knowledge of the true
underlying distribution of the input space. Instead, they need to

limiting experimental bias in ml for security 107

rely on a dataset containing a fixed number of samples that aim to
resemble the actual distribution. While it is inevitable that some
bias exists in most cases, understanding the specific bias inherent
to a particular problem is crucial to limit its impact in practice.
Drawing meaningful conclusions from the training data becomes
challenging, if the data does not effectively represent the input
space or even follows a different distribution.

Security implications. Sampling bias is highly relevant to security,
as the acquisition of data is particularly challenging and often re-
quires using multiple sources of varying quality. As an example,
for the collection of suitable datasets for Android malware de-
tection only a few public sources exist from which to obtain such
data [307, 8]. As a result, it is common practice to combine data
from different sources, which can introduce severe biases.

...but is hard to mitigate com-
pletely in security—though meth-
ods from data augmentation and
transfer learning can help.

Recommendations. In many security applications, sampling from
the true distribution is extremely difficult, if not impossible, re-
quiring alternative solutions. A reasonable strategy is to construct
different estimates of the true distribution and analyze them indi-
vidually. Other valid strategies include the extension of the dataset
with synthetic data [e.g., 56, 123, 313] or the use of methods from
the field of transfer learning [see 209, 310, 330, 328]. The mixing of
data from distinct or incompatible sources should be avoided, as
it is a common cause of sampling bias. In any case, possible lim-
itations of the used dataset should always be discussed, allowing
other researchers to better understand the security implications and
impact of the underlying sampling bias.

P2) Label Inaccuracy. The ground-truth labels required for classification
tasks are inaccurate, unstable, or erroneous, affecting the overall perfor-
mance of a learning-based system [176, 327].

Label inaccuracy results from
weak labeling heuristics which can
also be affected by drift...

Description. Many learning-based security systems are built for
classification tasks. To train these systems, a ground-truth label is
required for each observation. Unfortunately, the ground truth is
rarely perfect and researchers must account for uncertainty and
noise to prevent their models from suffering from inherent bias.

Security implications. For many relevant security problems, such as
detecting network attacks or malware, proper labels are typically
not available, resulting in a chicken-and-egg problem. As a remedy,
researchers often revert to heuristics, such as using external sources
that do not provide a reliable ground truth. For example, services
like VirusTotal [115] are commonly used for acquiring label informa-
tion for malware. Additionally, changes in adversary behavior may
alter the ratio between different classes over time [194, 4, 327], intro-
ducing another type of bias known as label shift [176]. A system that

108 machine learning for security in hostile environments

cannot adapt to these changes will experience performance decay
once deployed.

Recommendations. Generally, labels should be verified whenever
possible, for instance with sanity checks by inspecting a sample
of labels [e.g., 273]. If noisy labels cannot be ruled out, the impact
of noisy labels on the resulting model can be reduced by (i) using
robust models or loss functions by design, (ii) actively incorporat-
ing noisy labels by modeling them in the learning process, or (iii)
cleaning the training data from noisy instances that increase the
complexity of the model [see 104]. However, it should be stressed
that instances with uncertain labels must not be removed from
the test data. This represents a variation of sampling bias (P1) and
data snooping (P3). Additionally, as labels are often subject to ...but label noise can be modeled

or otherwise accounted for by the
system.

change over time in security settings it is necessary to check for la-
bel shift [176] and take precautions, such as delaying labeling until a
stable ground-truth is available [see 327].

P3) Data Snooping. A learning model is trained with data that is typ-
ically not available in practice. Data snooping can occur in many ways,
some of which are very subtle and hard to identify [1].

Data snooping occurs when in-
formation from test time is used
during design and training...

Description. It is common practice to split collected data into sep-
arate training and test sets prior to generating a learning model.
Although splitting the data seems straightforward, there are many
subtle ways in which test data (or other background information
that is not usually available) can affect the training process, leading
to data snooping. We broadly distinguish between three types of
data snooping: test, temporal, and selective snooping.

Test snooping occurs when the test set is used for experiments
before the final evaluation. This includes preparatory work to iden-
tify useful features, parameters, and learning algorithms. Temporal
snooping occurs if time dependencies within the data are ignored
such as when C1 is violated. This is a common pitfall, as the un-
derlying distributions in many security-related problems are under
continuous change [e.g. 182, 223]. Finally, selective snooping de-
scribes the cleansing of data based on information not available in
practice. An example is the removal of outliers based on statistics
of the complete dataset (i.e., training and test) that are usually not
available at training time.

Security implications. In security, data distributions are often
non-stationary and continuously changing due to new attacks
or technologies. Because of this, snooping on data from the fu-
ture or from external data sources is a prevalent pitfall that leads
to over-optimistic results. For instance, several researchers have
identified temporal snooping in learning-based malware detection
systems [e.g., 6, 14, 223]. In all these cases, the capabilities of the
methods are overestimated due to mixing samples from past and

limiting experimental bias in ml for security 109

present. Similarly, there are incidents of test and selective snooping
in security research that lead to unintentionally biased results (see
Section 5.10.3). ...satisfying C1, ensuring a fi-

nal test set is kept completely
separate...Recommendations. While it seems obvious that training, validation,

and test data should be strictly separated in all experiments, this
separation is often unintentionally violated during the preprocess-
ing stage of machine learning workflows. For example, we observe
that it is a common mistake to compute tf-idf weights or neural em-
beddings over the entire dataset (see Section 5.10.3). To avoid this
problem, test data should be split early during data collection and
stored separately until the final evaluation. Furthermore, temporal
dependencies within the data should be considered when creating
the dataset splits [182, 6, 223]. However, there also exist more sub-
tle variants of data snooping. For instance, as the characteristics of
publicly available datasets are increasingly exposed, methods de-
veloped using this data implicitly leverage knowledge from the test
data [see 190, 1].

...and using fresh data can all help
prevent snooping.

Consequently, well-known datasets should be mainly used for
comparison with past research and complemented with recent
data from the application setting. In any case, it should always be
discussed by researchers if the test data set may have influenced the
results due to the evaluation procedure (e.g., if a method has been
developed and evaluated using only well-known datasets).

P4) False Causality. Artifacts unrelated to the security problem create
shortcut patterns for separating classes. Consequently, the learning model
adapts to these artifacts instead of solving the actual task.

False causality can lead to inflated
performance which is actually due
to data artifacts...

Description. Data can contain artifacts that may loosely correlate
with the task to solve but are not actually related to it. Consider
the example of a network intrusion detection system, where a large
fraction of the attacks in the dataset originate from a certain net-
work region. The model may learn to detect a specific IP range in-
stead of generic attack patterns. Similarly, a detection system might
pick up artifacts from synthetic attacks that are unrelated to mali-
cious activity, as in the classic case of the “why six?” issue [284].

Security implications. Complex learning models with difficult to
interpret feature spaces are often at the core of security tasks. Dif-
ficulties in explaining models and results leads to false causality,
which often remains an unidentified issue. ...but these can often be identified

and removed by using explainabil-
ity techniques.Recommendations. Learned artifacts are likely to hinder the suc-

cessful application of the learning model in practice. Hence, ex-
plainable learning techniques should be used as a mandatory
check [see 122, 162, 305]. These can reveal if the classification re-
lies on spurious features.

110 machine learning for security in hostile environments

P5) Biased Parameter Selection. The final parameters of a learning-
based method are not entirely fixed at training time. Instead, they indi-
rectly depend on the test set.

Description. Throughout the learning procedure, it is common
practice to generate different models by varying hyperparameters.
The best-performing model is picked and its performance on the
test set is presented. While this setup may appear sound, it can still
suffer from bias.

For example, misleading results may be produced by using un-
calibrated metrics or by investigating the influence of hyperparame-
ters on the test data.

Parameter selection can be biased
if calibration is performed using
test data...

Security implications. A security system whose parameters have not
been fully calibrated at training time can perform very differently
in a realistic setting. While the detection threshold for a network
intrusion detection system may be chosen using a ROC curve ob-
tained on the test set, it can be hard to select the same operational
point in practice due the diversity of real-world traffic [267]. This
may lead to decreased performance of the system in comparison
to the original experimental setting. Note that this pitfall is related
to data snooping (P3), but should be considered explicitly as it can
easily lead to inflated results.

...but ensuring test data is kept
isolated from tuning, calibration,
and repeated experimentation can
prevent this.

Recommendations. A recurring issue in security research is that the
calibration is unintentionally performed on test data, for example,
when the operating point of a system is chosen after all experi-
ments have been completed. As this pitfall can be regarded as a
special case of data snooping, the same countermeasures apply. To
avoid this pitfall, it is of utmost importance to consequently use a
separate validation set for all model selection and parameter tuning.

5.10.2 Performance Evaluation

The next stage in a typical machine-learning workflow is the evalu-
ation of the system’s performance. In the following, we show how
different pitfalls can lead to unfair comparisons and biased results
in the evaluation of such systems.

P6) Inappropriate Baseline. The evaluation is conducted without, or
with limited, baseline methods. As a result, it is impossible to demonstrate
improvements against the state of the art and other security mechanisms.

Inappropriate baselines are those
that are too limited to justify the
use of the new proposal...

Description. To show to what extent a novel method improves the
state of the art, it is vital to compare it with previously proposed
methods. When choosing baselines, it is important to remember
that, despite great leaps forward in other fields, there exists no
universal algorithm in machine learning that dominates all other

limiting experimental bias in ml for security 111

approaches in general [312]. Consequently, providing only results
for the proposed approach or comparing it only with closely related
methods, does not give enough context to assess its impact. ...including a comparison against

both state-of-the-art methods and
simple, non-ML methods ensures
the bar is set fairly.

Security implications. An overly complex learning method does
not only increase the chances of overfitting, but it also increases the
runtime overhead, the attack surface, and the time and costs for
deployment. To show that machine learning techniques provide
significant improvements compared to traditional methods, it is
essential to compare these systems side by side.

Recommendations. Instead of focusing solely on complex mod-
els for comparison, simple models should also be considered
throughout the evaluation. These methods are easier to explain,
less computationally demanding, and have proven to be effective
and scalable in practice. Using well-understood, simple models as a
baseline can expose unnecessarily complex learning models and au-
tomated machine learning (AutoML) frameworks [e.g., 96, 138] are a
useful method for finding proper baselines. These frameworks en-
able researchers to automatically retrieve machine learning models
that have been trained using state-of-the-art techniques for hyper-
parameter tuning and model selection. While these automated
methods can certainly not replace experienced data analysts, they
can be used to set the bar the proposed approach should aim for.
Finally, it is critical to check whether non-learning approaches are
also suitable for the application scenario. For example, for intrusion
and malware detection, there exist a wide range of methods using
other detection strategies [e.g., 219, 239, 87].

(a) ROC curve

(b) PR curve

Figure 5.14: ROC and PR
curves applied to results on
an artificial dataset with an im-
balanced class ratio. While the
classifier’s decision scores are
the same in both cases, only
the PR curve conveys the true
performance.

P7) Inappropriate Performance Measures. The chosen performance
measures do not account for the constraints of the application scenario,
such as imbalanced data or the need to keep a low false-positive rate.

Description. A wide range of performance measures are avail-
able and not all of them are suitable in the context of security. For
example, when evaluating a detection system, it is insufficient to
report just a single performance value, such as the accuracy, be-
cause true-positive and false-positive decisions are not observable.
However, even more advanced measures, such as ROC curves, may
obscure experimental results. Figure 5.14 shows an ROC curve and
a precision-recall curve on an imbalanced dataset (class ratio 1:100).
Given the ROC curve alone, the performance appears excellent, yet
the low precision reveals the true performance of the classifier. Using inappropriate performance

metrics, such as AUC on imbal-
anced data, can give misleading
results.

Furthermore, various security-related problems deal with more
than two classes, requiring multi-class metrics. This setting can in-
troduce further subtle pitfalls. Common strategies, such as macro-
averaging or micro-averaging are known to overestimate and underes-
timate small classes [101].

112 machine learning for security in hostile environments

Security implications. Inappropriate metrics are a long-standing
problem in security research, particularly in detection tasks. While
true and false positives provide a more detailed picture of a sys-
tem’s performance, they can also disguise the actual precision when
the prevalence of attacks is low.

Recommendations. As the choice of metrics is highly application-
specific, we refrain from providing general guidelines. Instead,
we recommend ensuring the chosen measures would help a prac-
titioner assess the performance of the security system during a
deployment (see P9).

P8) Base Rate Fallacy. A large class imbalance is ignored when inter-
preting the performance measures leading to an overestimation of perfor-
mance.

Ignoring the realistic base rate
of the positive class can lead
to erroneous interpretations of
results...

Description. Class imbalance can easily lead to a misinterpretation
of performance if the base rate of the negative class is not consid-
ered. If this class is predominant, even a very low false-positive
rate can result in surprisingly high numbers of false positives. Note
the difference to the previous pitfall: while P7 refers to the inap-
propriate description of performance, the base-rate fallacy is about
the misleading interpretation of results. This special case is easily
overlooked in practice (see Section 5.10.3). Consider the example
in Figure 5.14 where 99% true positives are possible at 1% false
positives. Yet, if we consider thote class ratio of 1:100, this actually
corresponds to 100 false positives for every 99 true positives.

Security implications The base rate fallacy is relevant in a variety of
security problems, such as intrusion detection and website finger-
printing [e.g., 23, 140, 210]. In website fingerprinting, users can visit
billions of web pages, but only a tiny fraction of these web pages
are available for evaluation. As a result, it is challenging to provide
realistic numbers on the privacy threat posed by attackers. Simi-
larly, the probability of installing malware is usually much lower
than is considered in experiments on malware detection [223].

...but explicitly discussing the
number of false positives will
ensure a reader is not misled.

Recommendations. Several problems in security revolve around
detecting a rare event, namely attacks, so we advocate the use of
precision and recall as well as related measures, such as precision-
recall curves. In contrast to several other performance measures,
these functions do account for class imbalance and the base rate
fallacy, and thus resemble reliable performance indicators for de-
tection tasks focusing on a minority class [266, 75]. However, note
that precision and recall can also be misleading, for instance, if
the prevalence of attacks is inflated due to spatial bias as we have
discussed earlier in this chapter. In these cases, other metrics like
Matthews Correlation Coefficient (MCC) are more suitable to assess
the classifier’s performance and reveal potential weaknesses [61].

limiting experimental bias in ml for security 113

In addition, ROC curves are a useful metric for directly comparing
the performance of multiple approaches, but their expressiveness
depends highly on the selection of proper baselines. An explicit dis-
cussion of how the false positive rate of a proposed method relates
to the base rate of the negative class allows readers to get a sound
understanding of the system’s capabilities in the practical use case.

P9) Lab-Only Evaluation. A learning-based system is solely evaluated
in a laboratory setting, without discussing its practical limitations.

Description. As in all empirical disciplines, it is common to per-
form experiments under certain assumptions to demonstrate a
method’s efficacy. While performing controlled experiments is a
legitimate way to examine specific aspects of an approach, it should
ultimately be evaluated in a realistic setting to transparently assess
its capabilities and showcase the open challenges which will foster
further research.

Lab-only experiments do not
always effectively simulate the
deployment scenario...

Security implications. Many learning-based systems in security are
evaluated solely in laboratory settings, overstating their practical
impact. A common example are detection methods evaluated only
in a closed-world setting with limited diversity and no considera-
tion of non-stationarity [139, 27]. For example, a large number of
website fingerprinting attacks are evaluated only in closed-world
settings spanning a limited time period [140]. Similarly, many
learning-based malware detection systems have been insufficiently
examined in realistic settings as shown earlier.

...and practical limitations may
not become apparent until moving
to a real-world setting.

Recommendations. It is essential to move from a laboratory setting
and approximate a real-world setting as accurately as possible. As
discussed earlier in this chapter, temporal and spatial relations of
the data should be considered to account for the typical dynamics
encountered in the wild. Similarly, runtime and storage constraints
should be analyzed under practical conditions [see 241, 297, 27].
Ideally, the proposed system should be deployed to uncover prob-
lems that are not observable in a lab-only environment, such as the
diversity and complexity of real-world network traffic [see 267].

P10) Inappropriate Threat Model. The security of machine learning
is not considered, exposing the system to a variety of attacks, such as
poisoning and evasion attacks.

Due to the hostile environment,
security detectors are only as
useful as they are robust...

Description Learning-based security systems operate in an hostile
environment. Prior work in adversarial learning has revealed a
considerable attack surface introduced by machine learning itself at
all stages of the workflow [see 34, 217]. First, membership inference
attacks undermine models’ privacy, allowing an adversary to leak
information of training examples by exploiting overfitting in deep
neural networks [258]. Next, preprocessing attacks target the feature

114 machine learning for security in hostile environments

extraction step to inject arbitrary inputs to the system which affect
all further steps in the pipeline [315]. Poisoning and backdoor attacks
tamper with the data to modify a model’s behavior [35, 121]. Model
stealing allows for a model to be approximated, leaking intellectual
property and accelerating further attacks [291]. Finally, adversarial
examples are inputs that allow an adversary to control the final
prediction [37, 50].

Security implications. Neglecting to include adversarial influence in
the threat model and evaluation is fatal as a system deployed in an
adversarial environment which is not robust to adversaries will not
be able to provide trustworthy, meaningful results. Additionally,
failing to consider machine-learning related attacks will expose the
system to an additional attack surface—aside from traditional secu-
rity issues. For instance, an attacker can more easily evade a model
that relies on only a few features than a properly regularized model
that has been designed with security considerations in mind [77].
Furthermore, the semantic gap describes the discrepancy between
extracted features and the corresponding object [303]. For example,
an adversary can create adversarial examples of PDFs by injecting
content into areas that a regular PDF reader ignores but that a PDF
malware detector examines. It therefore becomes easy to manipu-
late the PDF feature vector while ensuring the inconspicuousness of
the corresponding object.

...so they must be evaluated as-
suming an adaptive attacker.

Recommendations. In most fields of security where learning-based
systems are used, we operate in an adversarial environment. Hence,
threat models should be defined precisely and systems evaluated
with respect to them. In most cases, it is necessary to assume an
adaptive adversary that specifically targets the proposed systems and
will search for and exploit weaknesses for evasion or manipula-
tion. Similarly, it is helpful to consider the different stages of the
machine learning workflow and investigate possible vulnerabil-
ities [see 34, 217, 51, 76]. White-box attacks should be employed
to consider a worst-case scenario, following Kerckhoff’s princi-
ple [147] and security best practices. Ultimately, a security system
is of little practical utility, if it can be easily circumvented and thus
an evaluation of adversarial aspects is a mandatory component in
security research.

5.10.3 Pitfalls Prevalence

Similar to our study estimating the prevalence of spatio-temporal
bias in Section 5.8, we now survey a set of representative research
works from the community to assess the prevalence of these pit-
falls. To this end, we conduct a ten-year retrospective study, with
an emphasis on the past 6 years, on 30 representative papers pub-
lished at the top-4 conferences for security-related research in our

limiting experimental bias in ml for security 115

community: ACM CCS, IEEE S&P, USENIX Security, and NDSS.
All papers apply machine learning to different security tasks,

encompassing a broad variety of topics. Note that research focusing
on the security of machine learning or that does not apply machine
learning at all is considered out of scope.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 5.15: Distribution of pa-
pers per year for the 30 papers
in our analysis.

In particular, our sample of top-tier papers includes the fol-
lowing topics: malware detection [19, 187, 223, 70, 314, 271]; net-
work intrusion detection [83, 256, 196, 259]; vulnerability discov-
ery [80, 97, 98, 172]; website fingerprinting attacks [260, 238, 84, 210];
social network abuse [206, 42, 269]; binary code analysis [257, 63, 26];
code attribution [136, 2]; steganography [29]; online scams [149];
game bots [166]; and ad blocking [135]. Figure 5.15 shows a break-
down of the papers by year of publication.

To assess the prevalence of pitfalls
in our community we review 30
top papers published since 2011...

Review process Each paper is assigned two independent review-
ers who assess the article and identify instances of the described
pitfalls. The pool of reviewers consists of six researchers who have
all previously published work on the topic of machine learning and
security in at least one of the considered security conferences. Re-
viewers do not consider any material presented outside the papers
under analysis (other than their associated artifacts such as datasets
or source code), and do not contact the authors for more informa-
tion. Once both reviewers have completed their assignments, they
discuss the paper in the presence of a third reviewer that may re-
solve any disputes. In case of uncertainty, the authors are given the
benefit of the doubt (e.g., in case of a dispute between partly present
and present, we assign partly present).

Throughout the process, all reviewers meet regularly in order to
discuss their findings and ensure consistency between the pitfalls’
criteria. Moreover, these meetings have been used to refine the
definitions and scope of pitfalls based on the reviewers’ experience.
Following any adaptation of the criteria, all completed reviews have
been re-evaluated by the original reviewers—this occurred twice
during our analysis. While cumbersome, this adaptive process
of incorporating reviewer feedback ensures that the pitfalls are
comprehensive in describing core issues across the state of the art.

We note that the inter-rater reliability of reviews prior to dispute
resolution is α = 0.832 using Krippendorff’s alpha, where α > 0.800
indicates confidently reliable ratings [155].

...using a scale from present to not
present, moderating the score if
the pitfall was discussed.

Assessment criteria For each paper, pitfalls are coarsely classified
as either present, not present, unclear from text, or does not apply. A
pitfall may be wholly present throughout the experiments without
remediation (present), or it may not (not present). If the authors have
corrected any bias or have narrowed down their claims to accom-
modate the pitfall, this is also counted as not present. Additionally,
we introduce partly present as a category to account for experi-
ments that do suffer from a pitfall, but where the impact has been
partially addressed. If a pitfall is present or partly present but ac-

116 machine learning for security in hostile environments

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Inappropriate Threat Model

Lab-Only Setup

Base Rate Fallacy

Inappropriate Measures

Inappropriate Baseline

Biased Parameters

False Causality

Data Snooping

Label Inaccuracy

Sampling Bias

5

11

15

13

21

9

18

4

17

2

5

4

1

13

5

4

1

1

3

1

2

1

3

5

5

1

2

5

5

3

11

3

2

2

6

5

13

4

12

7

6

6

17

3

18

Not present

Does not apply

Partly present (but discussed)

Partly present

Present (but discussed)

Present

Unclear from text

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Figure 5.16: Stacked bar chart
showing the pitfalls suffered
by each of the 30 papers ana-
lyzed. The colors of each bar
show the degree to which a
pitfall was present, and the
width shows the proportion
of papers in that group. The
number at the center of each
bar shows the cardinality of
each group.

knowledged in the text, we moderate the classification as discussed.
If the reviewers are unable to rule out the presence of a pitfall due
to missing information, we mark the publication as unclear from text.
Finally, in the special case of P10, if the pitfall does not apply to a
paper’s setting, this is considered as a separate category.

Observations The aggregated results from the prevalence analy-
sis are shown in Figure 5.16. A bar’s color indicates the degree to
which a pitfall is present, and its width shows the proportion of pa-
pers with that classification. The number of affected papers is noted
at the center of the bars. The most prevalent pitfalls are sampling
bias (P1) and data snooping (P3), which are at least partly present
in over 73% of the papers. In more than 50% of the papers, we iden-
tify inappropriate threat models (P10), lab-only evaluations (P9),
and inappropriate baselines (P6) as at least partly present. Every
paper is affected by at least three pitfalls, underlining the perva-
siveness of such issues in recent computer security research. In
particular, we find that dataset collection is still very challenging:
some of the most realistic and expansive open datasets we have
developed as a community are still imperfect.

Moreover, the presence of some pitfalls is more likely to be un-
clear from the text than others. We observe this for biased param-
eter selection (P5) when no description of the hyperparameters
or tuning procedure is given; for false causality (P4) when there
is no attempt to explain a model’s decisions; and for data snoop-
ing (P3) when the dataset splitting or normalization procedure is
not explicitly described in the text. These issues also indicate that
experimental settings are more difficult to reproduce due to a lack
of information. We find that all pitfalls are perva-

sive in security research affecting
between 23% and 90% of papers.Takeaways We find that all of the pitfalls are pervasive in security

research, affecting between 23% and 90% of the selected papers.

limiting experimental bias in ml for security 117

Each paper suffers from at least three of the pitfalls which, com-
pounded by the fact that only 20% of instances are accompanied by
a discussion in the text, indicates a clear lack of awareness in our
community.

Remark. Although our findings point to a serious problem
in research, we would like to remark that all of the papers
analyzed provide excellent contributions and valuable insights.
Our objective here is not to blame researchers for stepping into
pitfalls but to raise awareness and increase the experimental
quality of research on machine learning in security.

5.11 Related Work

As described in the previous section, a common experimental bias
in security is the base rate fallacy [23], which states that in highly-
imbalanced datasets (e.g., network intrusion detection, where most
traffic is benign), TPR and FPR are misleading performance metrics,
because even FPR = 1% may correspond to millions of FPs and
only thousands of TPs. In contrast, our work identifies experimental
settings that are misleading regardless of the adopted metrics, and
that remain incorrect even if the right metrics are used (Section 5.6).
Sommer and Paxson [267] discuss challenges and guidelines in ML-
based intrusion detection; Rossow et al. [241] discuss best practices
for conducting malware experiments; van der Kouwe et al. [296]
identify 22 common errors in system security evaluations. While
helpful, these works [296, 241, 267] do not identify temporal and
spatial bias, do not quantify the impact of errors on classifiers per-
formance, and their guidelines would not prevent all sources of
temporal and spatial bias we identify. To be precise, Rossow et
al. [241] evaluate the percentage of objects—in previously adopted
datasets—that are “incorrect” (e.g., goodware labeled as malware,
malfunctioning malware), but without evaluating impact on clas-
sifier performance. Zhou et al. [326] have shown that Hardware
Performance Counters (HPCs) are ineffective for malware classifica-
tion; while interesting and in line with the spirit of our work, their
focus is narrow, and they rely on 10-fold CV in their evaluation.

Allix et al. [6] broke new ground by evaluating malware clas-
sifiers in relation to time and showing how future knowledge can
inflate performance, but do not propose any solution for compa-
rable evaluations and only identify C1. As a separate issue, Allix
et al. [7] investigated the difference between in-the-lab and in-the-
wild scenarios and found that the greater presence of goodware
leads to lower performance. We systematically analyze and ex-
plain these issues and help address them by formalizing a set of
constraints (jointly considering the impact of temporal and spatial
bias), introducing AUT as a unified performance metric for fair

118 machine learning for security in hostile environments

time-aware comparisons of different solutions, and offering a tun-
ing algorithm to leverage the effects of training data distribution.
Miller et al. [194] identified temporal sample consistency (equivalent to
our constraint C1), but not C2 or C3—which are fundamental (Sec-
tion 5.6); moreover, they considered the test period to be a uniform
time slot, whereas we take time decay into account. Roy et al. [242]
questioned the use of recent or older malware as training objects
and the performance degradation in testing real-world object ra-
tios; however, most experiments were designed without considering
time, reducing the reliability of their conclusions. While past work
highlighted some sources of experimental bias [194, 242, 6, 7], it
also gave little consideration to classifiers’ aims: different scenarios
may have different goals (not necessarily maximizing F1), hence
in our work we show the effects of different training settings on
performance goals and propose an algorithm to properly tune a
classifier accordingly (Section 5.5.3).

Other works from the ML literature investigate imbalanced
datasets and highlighted how training and testing ratios can in-
fluence the results of an algorithm [309, 126, 57]. However, not
coming from the security domain, these studies [309, 126, 57] focus
only on some aspects of spatial bias and do not consider temporal
bias. Indeed, concept drift is less problematic in some applications
(e.g., image and text classification) than in Android malware [139].
Fawcett [93] focuses on challenges in spam detection, one of which
resembles spatial bias; no solution is provided, whereas we in-
troduce C3 to this end and demonstrate how its violation inflates
performance (Section 5.6). Torralba and Efros [289] discuss the
problem of dataset bias in computer vision, distinct from our secu-
rity setting where there are fewer benchmarks; moreover in images
the negative class (e.g., “not cat”) can grow arbitrarily, which is
less likely in the malware context. Moreno-Torres et al. [199] sys-
tematize different drifts, and mention sample-selection bias; while
this resembles spatial bias, they do not propose any solution/ex-
periments for its impact on ML performance. Other related work
underlines the importance of choosing appropriate performance
metrics to avoid an incorrect interpretation of the results (e.g., ROC
curves are misleading in an imbalanced dataset [124, 75]). In this
chapter, we take imbalance into account, and we propose actionable
constraints and metrics with tool support to evaluate performance
decay of classifiers over time.

Overall, several studies of bias exist and have motivated our
research, but none address the entire problem in the context of
evolving data (where the i.i.d. assumption does not hold anymore).
Constraint C1, introduced by Miller et al. [194], is by itself insuffi-
cient to eliminate bias. This is evident from the original evaluation
in MaMaDroid [187], which enforces only C1. The evaluation
in Section 5.6 clarifies why our novel constraints C2 and C3 are fun-
damental, and shows how our AUT metric can effectively reveal the
true performance of algorithms, providing counterintuitive results.

limiting experimental bias in ml for security 119

5.12 Summary

We identify novel sources of temporal and spatial bias in the An-
droid domain and propose novel constraints, metrics, and tuning to
address such issues. We build and release Tesseract as an open-
source tool that integrates our methods. We show how Tesseract

can reveal the real performance of malware classifiers that remain
hidden in wrong experimental settings in a non-stationary context.
Tesseract is fundamental for the correct evaluation and compari-
son of different solutions, in particular when considering mitigation
strategies for time decay and quantifying the impact of concept
drift. Beyond these sources of bias we additionally describe com-
mon pitfalls in the evaluation of machine learning-based methods
applied to the security domain and measure their prevalence in
recent research. Addressing these sources of bias is essential to en-
sure the stable and consistent evaluation of methods for mitigating
concept drift and adversarial examples.

6 Identifying and Rejecting Drifting Examples

6.1 Key Insights

6.2 Overview
6.3 Concept Drift and Rejection

6.4 Towards Sound Conformal
Evaluation

6.5 Towards Practical Conformal
Evaluation

6.6 Sound and Practical
Transcendent

6.7 Experimental Evaluation

6.8 Operational Considerations

6.9 Related Work

6.10 Summary

It is clear that concept drift is a major obstacle towards
the successful deployment of machine-learning based security
detectors. Previous chapters have illustrated the extent to which
drifting and adversarial examples impact detection performance
and how to design consistent and realistic experiments to fairly
evaluate potential defenses against them.

In this chapter we focus on one promising strategy in particular:
classification with a reject option. Having a reject option allows
a classifier to discard low quality predictions that are likely to be
incorrect—such as those made for drifting examples. Additionally,
identifying and tracking drifting examples allows us to monitor
the changing character of the data distribution over time and better
understand the factors contributing to drift.

Chapter 5 already touched on a naïve application of classification
with rejection, but here we examine a more sophisticated method:
Transcendent, a rejection framework that builds on Transcend [139],
and relies on conformal prediction and conformal evaluation theory to
identify and reject drifting examples.

6.1 Key Insights

For reference, this chapter provides the following contributions:

• We investigate the theory underpinning the motivation and intu-
ition of conformal evaluation to provide a missing link between
conformal evaluation and conformal prediction theory that ex-
plains its effectiveness and supports the empirical evaluations
presented in both this work and the original (Section 6.4).

• Building on this insight, we propose two novel conformal evalu-
ators: inductive conformal evaluator (ICE) (Section 6.5.2) and cross-
conformal evaluator (CCE) (Section 6.5.3), both of which are firmly
grounded in conformal prediction theory and able to effectively
identify and reject drifting examples while being significantly
less computationally demanding than the original. We formal-

122 machine learning for security in hostile environments

ize the calibration procedure as an optimization problem and
propose an improved threshold search strategy (Section 6.6).

• We evaluate our proposals on a dataset spanning 5 years (2014–
2019) containing ~10% malware that eliminates sources of bias
present in past evaluations (Section 6.7). We compare different
operational settings, including the effects of including algo-
rithm confidence (Section 6.7.3) and of using different search
strategies (Section 6.7.4) during thresholding. Our methods out-
perform existing state-of-the-art approaches (Section 6.7.5), and
generalize well across different malware domains and under-
lying classifiers (Section 6.7.6). To aid practitioners in adopting
rejection strategies, we discuss how to integrate Transcendent
into a typical security detection pipeline (Section 6.8).

The content of this chapter has been previously presented in:

• Barbero F.*, Pendlebury F.*, Pierazzi F., Cavallaro L. Transcend-
ing TRANSCEND: Revisiting Malware Classification in the Pres-
ence of Concept Drift. To appear in In Proc. of the IEEE Sympo-
sium of Security and Privacy (S&P). 2022.

6.2 Overview

Machine learning relies on the
i.i.d. assumption which is violated
in security settings...

While machine learning (ML) algorithms have displayed superhu-
man performance across a wide range of classification tasks such as
computer vision [156] and natural language processing [86], a great
deal of this success is conditional on one central assumption: that
the training and test data are drawn identically and independently
from the same underlying distribution (i.i.d.) [40].

To reiterate the central theme of this thesis: in a security setting
the i.i.d. assumption often does not hold. In particular, malware
classifiers are deployed in dynamic, hostile environments. New
paradigms of malware evolve to pursue profits, new variants arise
as novel exploits are discovered, and adversaries switch behav-
ior suddenly and dramatically when faced with strengthened de-
fenses. This causes the incoming test distribution to diverge from
the original training distribution, a phenomenon known as concept
drift [199]. Over time, the performance of the classifier begins to
degrade as the model fails to classify the new objects correctly.

There appear to be two broad approaches to tackling concept
drift. The first is to design systems which are intrinsically more
resilient by developing more robust feature spaces. For example,
results in the previous chapter suggest that neural networks may
be more resilient to concept drift as the latent feature space better
generalizes to new variants. However, robust feature space design ...but it is possible to adapt to the

new distribution if drift can be
accurately identified...

is an open research question and it is not clear if there exists a
malware representation such that no concept drift will not occur.

A second solution is to adapt to the drift, for example by up-
dating the model using incremental retraining or online learn-

identifying and rejecting drifting examples 123

ing [316, 204], or rejecting drifting points. However, in order to be
effective, decisions about when and how to take action on aging
classifiers must be taken quickly and decisively. To do so, accurate
detection and quantification of drift is vital.

...which was the focus of
Transcend [139], a framework
using conformal evaluation...

This problem is precisely the focus of Transcend [139], a statisti-
cal framework that builds on conformal prediction theory [301] to
detect aging malware detectors during deployment—before their
accuracy deteriorates to unacceptable levels. Transcend [139] pro-
poses a conformal evaluator that utilizes the notion of nonconformity
to identify and reject new examples that differ from the training
distribution and are likely to be misclassified; the corresponding
apps can then be quarantined for further analysis and labeling.
While effective, the original proposal suffers from experimental
bias, is extremely resource intensive and impractical, lacks exper-
iments to support generalization claims, fails to provide guidance
on how to integrate it into a detection pipeline and, perhaps more
importantly, lacks a theoretical analysis to explain its effectiveness. ...and is revisited in this work as

Transcendent, an improvement in
terms of effectiveness, cost, and
generalizability.

We revisit conformal evaluator and Transcend to root its internal
workings in sound theory and determine its operational settings.
We additionally propose Transcendent, a framework that surpasses
the performance of the original in terms of drift detection and
computational overhead, making it a sound and practical solution.

6.3 Concept Drift and Rejection

We focus on classification for security tasks (Section 6.3.1) which
are affected by concept drift (Section 6.3.2). In particular, we are
interested in improving the state-of-the-art approaches for classifi-
cation with rejection (Section 6.3.3).

6.3.1 Machine Learning and Security Detection

Machine learning is a set of statistical methods for enabling systems
to perform data-driven tasks without being explicitly programmed
for them. In the malware domain, typical tasks include binary clas-
sification (detecting malicious examples [19, 316]) and multiclass
classification (predicting the malware family [275, 74, 276]) but can
also extend to more complex tasks such as predicting how many
AV engines would detect an example [145], inferring Android mal-
ware app permissions based on their icons [314], or generating
Windows malware using reinforcement learning [12].

As before we focus on drift in
classification tasks.

As in previous chapters, here we focus on classification tasks
where a classifier g aims to learn a function mapping X → Y ,
where X ⊆ Rn is a feature space of vectors capturing interesting
properties of the apps and Y is a label space containing binary
labels for the detection task or the names of malware families for
the multiclass classification task.

124 machine learning for security in hostile environments

(a) Nearest centroid (b) Polynomial SVM (c) RBF SVM (d) 3-NN

(e) Random forest (f) QDA (g) MLP sigmoid (h) MLP with SVM RBF

Figure 6.1: Possible NCMs
for different classifiers. The
solid line depicts the decision
boundary between classes
and #, the dotted lines show
SVM margins. Shaded areas
capture points which are more
nonconform (i. e., ‘less similar’)
than the new test point (B),
with respect to class .

6.3.2 Concept Drift

As we have described in Chapter 3, concept drift is a common
phenomenon in classification tasks when the joint distribution of
inputs and outputs differs between training and test time [230].
This drift induces a performance decay over time as the model
loses the ability to distinguish between members of each class—this
performance decay was the focus of Chapter 5.

Sources of drift in malware classification can be fairly benign,
such as changes in market trends or new developer APIs [325].
However, the main driving force of drift is the development of new
malware techniques to evade detection [4, 12, 226, 318], increase
infection rates [283], and generate greater profits [148].

6.3.3 Rejection

In lieu of robust feature spaces,
drift should be tracked and miti-
gated...

There are multiple routes to dealing with concept drift. The most
effective would be to design a feature space X such that it is en-
tirely robust to concept drift, essentially distilling all possible mal-
ware behaviour down to a ‘Platonic ideal’ [229] that captures mali-
ciousness no matter what form it takes. While recent proposals for
augmenting feature spaces with robust features are promising [e.g.,
288, 325], the diversity of malware makes it extremely difficult to
design such a feature space. Additionally, some behaviour is only
considered malicious due to its context, for example, requesting
access to the device contacts might be considered suspicious for a
torch app but not for a social messaging app [320].

An orthogonal approach is to identify, track, and mitigate the

identifying and rejecting drifting examples 125

drift as it occurs. One promising method is classification with rejec-
tion [30], in which low confidence predictions, caused by drifting
examples, are rejected. Drifting apps can then be quarantined and
dealt with separately, either warranting manual inspection or reme-
diation through other means.

...which Transcend [139] achieves
through classification with rejec-
tion.

Transcend [139] is a state-of-the-art framework for performing
classification with rejection in security tasks. It uses a conformal
evaluator to generate a quality measure to assess whether a new
test example is drifting with respect to the training data. If the pre-
diction of an underlying classifier appears to be affected by the
drift, the prediction is rejected. The original proposal presented
two case studies: Android malware detection—a binary classifica-
tion task, and Windows malware family classification—a multiclass
classification task. The experiments showed that the framework
is consistently able to identify drifting examples, providing a sig-
nificant improvement over thresholding on the classifiers’ output
probabilities. However, the lack of a theoretical treatment and the
computational complexity of the framework limited its understand-
ing and use in real-world deployments.

6.4 Towards Sound Conformal Evaluation

Transcend [139] is driven by a
conformal evaluator...

The statistical engine that drives Transcend’s rejection mechanism
is the conformal evaluator, a tool for measuring the quality of pre-
dictions output by an underlying classifier. Conformal evaluator
design is grounded in the theory of conformal prediction [301], a
method for providing predictions that are correct with some guar-
anteed confidence. In this section we investigate the relationship
between the two to provide novel insights and intuition into why
conformal evaluation is effective for classification with rejection.

6.4.1 Conformal Evaluation vs. Prediction

...which adapts conformal predic-
tion theory to drifting settings...

Here we give an overview of conformal prediction and how it moti-
vates the use of conformal evaluation; for a more formal treatment
of conformal prediction we refer to Vovk et al. [301]. Conformal
prediction allows for predictions to be made with precise levels
of confidence by using past experience to account for uncertainty.
Given a classifier g, a new example z = (x, y), and a significance
level ε, a conformal predictor produces a prediction region: a set of
labels in the label space Y that is guaranteed to contain the cor-
rect label y with probability no more than 1− ε. To calculate this
label set, the conformal predictor relies on a nonconformity mea-
sure (NCM) derived from g and uses it to generate scores repre-
senting how dissimilar each example is from previous examples
of each class. To quantify this relative dissimilarity, p-values are
calculated by comparing the nonconformity scores between ex-

126 machine learning for security in hostile environments

amples (Section 6.4.2). As well as these p-values, two important
metrics are derived from the prediction region, confidence and
credibility (Section 6.4.3), which can be used to judge the effective-
ness of the conformal prediction framework. Conformal predictors
are able to make strong guarantees on the correctness of each pre-
diction so long as two assumptions about new test examples hold:
the exchangeability assumption, that the sequence of examples is
exchangeable, a generalization of the i.i.d. property; and the closed-
world assumption, that new examples belong to one of the classes
observed during training.

...in order to assess the reliability
of (and possibly reject) a predic-
tion.

Rather than making predictions, conformal evaluators [139] bor-
row the same statistical tools (i. e., nonconformity measures and p-
values) but use them to evaluate the quality of the prediction made
by the underlying classifier g. By detecting instances which appear
to violate the aforementioned assumptions they can, with high con-
fidence, reject new drifting examples which would otherwise be at
risk of being misclassified.

6.4.2 Nonconformity Measures and P-values

In order to reject a new example that cannot be reliably classified,
conformal evaluators rely on a notion of nonconformity to quantify
how dissimilar the new example is to a history of past examples.
In general, a nonconformity measure (NCM) [253] is a real-valued
function that outputs a score describing how different an example z
is from a bag of previous examples B = Hz1, z2, ..., znI:

αz = A(B, z). (6.1)

The greater the value of αz, the less similar z is to the elements

A nonconformity measure (NCM)
outputs a score of how dissimilar
a new object is to a given class...

of the bag B. An NCM is typically formed of two components: a
metric d(z, z′) to measure the distance between two points, and a
point predictor ẑ(B) to represent B:

A(B, z) := d(ẑ(B), z). (6.2)

Illustrating this, Figure 6.1(a) shows an NCM for a nearest centroid
classifier in which the Euclidean distance is used for d(z, z′), and
the nearest class centroid is used for ẑ(B).

For a new example z∗, the conformal evaluator must decide
whether or not to approve the null hypothesis asserting that z∗

does not belong in the prediction region formed by elements of B.
To perform such a hypothesis test, p-values are calculated using
the NCM values for each point. First the nonconformity score of
z∗ must be computed (Equation 6.3) along with nonconformity
scores of elements in B (Equation 6.4), then the the p-value pz∗

for z∗ is given as the proportion of points with greater or equal

identifying and rejecting drifting examples 127

nonconformity scores (Equation 6.5):

αz∗ = A(B, z∗) (6.3)

S = HA(B \ HzI, z) : z ∈ BI (6.4)

pz∗ =
|α ∈ S : α >= αz∗ |

|S| (6.5)

In the classification context, we can calculate p-values in a label

...and used to compute p-values
which are compared to a per-class
threshold indicating whether the
corresponding prediction should
be rejected.

conditional manner, such that B contains only previous examples
of class ŷ ∈ Y where ŷ = g(z∗) is the predicted class of the
new example. If pz∗ falls above a given significance level the null
hypothesis is disproved and ŷ is accepted as a valid prediction.
Transcend [139] computes per-class thresholds to use as significance
levels (Section 6.6).

As p-values are calculated by considering nonconformity scores
relative to one another, NCMs can be transformed monotonically
without any impact on the resulting p-values. Thus, when design-
ing an NCM in the form given by Equation 6.2, the distance met-
ric d(z, z′) is significantly less important than the point predictor
ẑ(B). It is important to note that conformal evaluator algorithms
are agnostic to the underlying NCM chosen, but the quality of the
NCM—and particularly of ẑ(B), will impact the ability of confor-
mal evaluators to discriminate between valid and invalid predic-
tions [253].

A good NCM should allow p-
values of correct and incorrect
predictions to be easily separated...

An alpha assessment [139] can be used to empirically evaluate how
appropriate an NCM is for a given dataset by plotting the distribu-
tion of p-values for each class, further split into whether the pre-
diction was correct or incorrect. As incorrect predictions should be
rejected, they are expected to fall below the threshold, while correct
predictions are expected to fall above the threshold. Well-separated
distributions of correct and incorrect predictions suggest a viable
threshold exists to separate them at test time. Poorly separated pre-
diction p-values indicate an inappropriate NCM. An example of an
alpha assessment on a toy dataset is shown in Figure 6.4 (d).

Figure 6.1 illustrates possible NCMs for different algorithms on a
toy binary classification task with existing class examples /# and
new test example B.

...but can be designed for many
different learning algorithms.

The different algorithms illustrated are nearest centroid, support-
vector machines (SVMs), nearest neighbors (NN), random forest,
quadratic discriminant analysis (QDA), and multilayer perceptron
(MLP). The solid line delineates the decision boundary between
classes and # while the dotted lines show SVM margins where
applicable. The shaded region captures points which are more non-
conform (i. e., ‘less similar’) than the new test point, with respect to
class . As NCMs, (a) uses the distance from the class centroid;
(b) and (c) use the negated absolute distance from the hyperplane;
(d) uses the proportion of nearest neighbors belonging to class #;
(e) uses the proportion of decision trees that predict #; (f) uses the
negated probability of belonging to class ; (g) uses the negated
probability output by the final sigmoid activation layer; (h) uses

128 machine learning for security in hostile environments

1 - max(p , p) 1 - p

{ }

0 10.68 0.92

{ , }Ø

Figure 6.2: Nested intervals for
which the output set contains
labels and # for a test ex-
ample with per-class p-values
p = 0.32 and p# = 0.08. The
shaded areas outline how cred-
ibility and confidence relate to
the intersection of prediction
regions for which the label set
contains one element. The high
probability of the empty set
containing the correct label
(i. e., low credibility) indicates
one of conformal prediction’s
assumptions may have been
violated. Conformal evaluation
uses this as a signal that the
new example is drifting.

the outputs of the final hidden layer to train an SVM with RBF
kernel and uses the negated absolute probabilities output by that
SVM—while the decision boundary still depends on the MLP out-
put alone).

Note that the shape of the nonconformal region need not reflect
the shape of the regions for the predicted classes (e.g., (a)) and
that there may be multiple viable NCMs for the same underlying
algorithm (e.g., (g–h)).

6.4.3 Successfully Identifying Drift

Recall that conformal prediction produces a prediction region given
a significance level ε. The possible prediction regions are nested
such that the higher the confidence level, the more labels will be
present. As a trivial example, a prediction region containing all
possible labels may be produced for a significance level of ε =

0 (maximum likelihood) as it will contain the true label y with
certainty. At the other extreme, an empty set can be produced at
a significance level of ε = 1 (minimum likelihood), as this is an
impossible result under the closed-world assumption of conformal
prediction.

Of particular interest is the prediction region containing a single
element which lies between these extremes. Related to this pre-
diction region, a conformal predictor also outputs two metrics:
confidence and credibility (Figure 6.2).

Conformal prediction produces
two quality metrics: confidence
and credibility...

Confidence is the greatest 1− ε for which the prediction region
contains a single label which can be calculated as the complement
to 1 of the second highest computed p-value. Confidence quantifies
the likelihood that the new element belongs to the predicted class.

Credibility is the greatest ε for which the prediction region is
empty and corresponds to the largest computed p-value. Confor-
mal predictors can be forced to output single predictions (rather
than a label set induced by ε), in which case they will output the
class with the highest credibility. Credibility quantifies how rele-
vant the training set is to the prediction. A low credibility indicates
that conformal prediction might not be a suitable framework to use
with the given data because a low credibility means that the prob-
ability of the correct label being in the empty set is relatively high,
which is an impossible result under the closed-world assumption of
conformal prediction.

We propose that conformal evaluation’s effectiveness stems from
this relationship: that in conformal evaluation, this probability is
being directly interpreted as the probability that the i.i.d. assump-
tion has been violated. Thus, a low credibility means that there is

identifying and rejecting drifting examples 129

Conformal Evaluator Complexity Runtime in Section 6.7.2

TCE O(n2) est. 1.9 CPU yrs
Approx-TCE, 1/(1− p) folds O(n/(1− p)) 46.1 CPU hrs
ICE O(pn) 11.5 CPU hrs
CCE, 1/(1− p) folds O(pn/(1− p)) 36.6 CPU hrs

Table 6.1: Runtime complexi-
ties and empirical runtime for
conformal evaluator calibra-
tion where n is the number
of training examples and p is
the proportion of examples
included in the proper training
set each split/fold.

a high probability that the corresponding example is drifting with
respect to the previous history of training examples. Such an exam-
ple is at risk of being misclassified due to limited knowledge of the
classifier.

...conformal evaluation inter-
prets credibility as a signal that
the i.i.d. assumption has been
violated.

It should be noted that formally, conformal evaluation defines
credibility and confidence slightly differently. In conformal evalu-
ation, the credibility is the p-value corresponding to the predicted
class and the confidence is the complement to 1 of the maximum
p-value excluding the p-value corresponding to the predicted class
(i. e., the credibility p-value). This subtle difference is important to
clarify the operational context of a conformal evaluator: whereas
conformal predictors output the final classification decision, confor-
mal evaluators output a statistical measure separate to the decision
of the underlying classifier (hence the nomenclature: one predicts
and the other evaluates). In practice, given reasonable NCMs, these
definitions can be treated as equivalent.

6.5 Towards Practical Conformal Evaluation

In assessing the quality of a prediction for a new test point, there is
the question of which previously encountered points the new point
should be compared to—that is, which elements are included in
the bag B of Equation 6.3, and how. Typically, new test points are
compared against a set of calibration points.

Transcend [139] used a Transduc-
tive Conformal Evaluator (TCE)
which was extremely computa-
tionally expensive...

In Jordaney et al. [139], conformal evaluation was realized us-
ing a Transductive Conformal Evaluator (TCE). With a TCE, every
training point is also used as a calibration point. To generate the
p-value of a calibration point, it is first removed from the set of
training points and the underlying classifier trained on the remain-
ing points. Given the newly trained classifier, a predicted label is
generated for the calibration point. Finally, using a given NCM,
its p-value is computed with respect to the points whose ground
truth label matches its predicted label. This procedure is repeated
for every training point. Following this, Transcend’s thresholding
mechanism operates on the calculated p-values to determine per-
class rejection thresholds (Section 6.6). At test time, the underlying
classifier is retrained on the entire training set, and, similarly to the
calibration points, the p-values are computed with respect to the
p-values of the calibration sets.

While the Transductive Conformal Evaluator (TCE) used in the
original proposal [139] appears to perform well, it does not scale
to larger datasets as a newly trained classifier is required for ev-

130 machine learning for security in hostile environments

ery training point. Consider the experiments in Section 6.7 where
fitting a single instance of the underlying classifier takes 10 CPU
minutes. In this case, we estimate a single run using vanilla TCE to
take 1.9 CPU years.

We propose a number of novel conformal evaluators that over-
come this limitation and present their advantages and disadvan-
tages. A comparison of their runtime complexities and operational
considerations are presented in Table 6.1 and Section 6.8, respec-
tively. Formal algorithms for their calibration and test procedures
are included in Section 6.5.4 while Figure 6.3 provides a graphical
intuition to their different calibration splits.

Note that while our illustrative examples and evaluation are
given for the binary detection task, Transcendent and conformal
evaluation are agnostic to the total number of classes and this is
captured in the formal definitions. If multiclass NCMs cannot be
derived, per-class conformal evaluators may be arranged as a one-
vs-all ensemble.

P-value target Included in bag Excluded from calibration

(a) TCE

(b) Approx-TCE

(c) ICE

(d) CCE

Figure 6.3: Illustration of the
different calibration splits em-
ployed by each of the confor-
mal evaluators showing the
target of the p-value calcula-
tion, relative points included in
the bag, and points excluded
from the calibration.

6.5.1 Approximate TCE (approx-TCE)

Our first attempt at reducing the computational overhead induced
by the Transductive Conformal Evaluator is the approximate Trans-
ductive Conformal Evaluator (approx-TCE). In the original TCE, p-
values are generated for each calibration point by removing them
from the training set, retraining the underlying classifier on the re-
maining points, and repeating until a p-value is computed for every
training point.

In approx-TCE, calibration points are left out in batches, rather
than individually. The training set is randomly partitioned into k
folds of equal size. From the k folds, one is used as the target of
the calibration and the remaining k− 1 folds are used as the bag to
which those points are compared to. This process repeats k times,
until each fold has been used as the calibration set exactly once.
Note that all of the k calibration sets are mutually exclusive; the
corresponding batches of p-values are then concatenated in the
same manner as in TCE.

...we propose a relaxed approxi-
mate variant (approx-TCE)...

The statistical soundness of the approx-TCE relies on the as-
sumption that the decision boundary obtained from leaving out
calibration points in batches approximates each of the decision
boundaries that would have been obtained per calibration point in
the batch if the point had been left out individually. If this assump-
tion holds, the generated p-values will be the same as, or similar to,
the p-values generated with a TCE. The approximation grows more
accurate as k increases until k equals the cardinality of the training
set at which point the approx-TCE and the TCE are equivalent. In
this sense, the approx-TCE can be viewed as a generalization of the
TCE.

This assumption is more likely to hold with algorithms with

identifying and rejecting drifting examples 131

lower variance (e.g., linear models), but becomes more tenuous as
the variance increases unless k increases also—sacrificing the saved
computation to mitigate the statistical instability.

6.5.2 Inductive Conformal Evaluator (ICE)

...a new inductive conformal
evaluator (ICE) which is more
computationally efficient...

The second conformal evaluator we propose is the Inductive Con-
formal Evaluator (ICE) which, unlike the approx-TCE, is based
on a corresponding approach from conformal prediction the-
ory [301, 300, 211]. The ICE directly splits the training set into
two non-empty partitions: the proper training set and the calibra-
tion set. The underlying algorithm is trained on the proper training
set, and p-values are computed for each example in the calibration
set. Unlike the TCE, p-values are not calculated for every training
point, but only for examples in the calibration set, with the proper
training set having no role in the calibration at all. The ICE aims to
inductively learn a general rule on a single fold of the training set.

This induces significantly less computational overhead than the
TCE and approx-TCE (see Table 6.1) and in practice is extremely
fast, but also very informationally inefficient. Only a small proportion
of the training data is used to calibrate the conformal evaluator,
when ideally we would use all of it. Additionally, the performance
of the evaluator depends heavily on the quality of the split and the
calibration set’s ability to generalize to the remainder of the dataset.
This results in some uncertainty: an ICE may perform worse than a
TCE due to a lack of information, or better due to a lucky split.

6.5.3 Cross-Conformal Evaluator (CCE)

...and a new cross-conformal eval-
uator (CCE) which is both com-
putationally and informationally
efficient, with extra flexibility.

The Cross-Conformal Evaluator (CCE) draws on inspiration from k-
fold cross validation and aims to reduce both the computational
and informational inefficiencies of the TCE and ICE. Like the ICE,
the CCE has a counterpart rooted in conformal prediction the-
ory [302].

The training set is partitioned into k folds of equal size. So that a
p-value is obtained for every training example, each fold is treated
as the calibration set in turn, with p-values calculated as with an
ICE, using the union of the k − 1 remaining folds as the proper
training set to fit the underlying classifier.

Finally we concatenate the p-values in a way which preserves
their statistical integrity when decision quality is evaluated. We set
aside the k fit underlying models and corresponding calibration
sets for test time. When a new point arrives, the prediction from
each classifier is evaluated against the corresponding calibration
set. The final result is the majority vote over the k folds, i. e., the
prediction of a particular class is accepted if the number of accepted
classifications is greater than k

2 , and rejected otherwise.
The CCE can be viewed as k ICEs, one per fold, and these ICEs

132 machine learning for security in hostile environments

Algorithm 4: Transductive Conformal Evaluator (TCE and approximate TCE)
Input: Z = Hz0, z1, . . . , zn−1I, n training examples; Z∗ = Hz∗0 , z∗1 , . . .I, stream of test examples; A, NCM for

producing nonconformity scores; k ∈N, number of folds—TCE is approximate when k < n
Output: Stream of boolean decisions 0 = reject, 1 = accept

Calibration Phase

1 P← 0 ; i← 0
2 partition Z equally into Zpart ← { Z′0, Z′1, . . . , Z′k−1 }
3 foreach partition Z′ of Zpart do
4 Z′′ ← Z \ Z′

5 g← Fit (Z′′)
6 foreach z′ of Z′ do
7 ŷ← g(z′) . Predicted label
8 Z′ŷ ← Hz ∈ Z′ : z.y = ŷI . Bag of examples with same label

9 αz′ ← A(Z′ŷ, z′) . Nonconformity score

10 S← HA(Z′ŷ \ HzI) : z ∈ Z′ŷI . Nonconformity scores for bag elements

11 pz′ ← |α∈S:α>=αz′ |
|S| . Credibility p-value

12 Pi ← pz′

13 i← i + 1
14 end
15 end
16 t∗ ←Transcend.FindThresholds (Z, Ŷ , P)

Test Phase

17 g← Fit (Z)
18 foreach z∗ of Z∗ do
19 ŷ← g(z∗) . Predicted label for test example
20 Zŷ ← Hz ∈ Z : z.y = ŷI . Bag of training examples with same label
21 αz∗ ← A(Zŷ, z∗) . Nonconformity score
22 S← HA(Zŷ \ HzI) : z ∈ ZŷI . Nonconformity scores for bag elements

23 pz∗ ← |α∈S : α>=αz∗ |
|S| . Credibility p-value

24 if Pz∗ < t∗ŷ then emit 0 else emit 1

25 end

operate in parallel to reduce computation time—if the resources are
available. However, there is an additional memory cost with storing
the separate models.

6.5.4 Conformal Evaluator Algorithms

For completeness, we present detailed algorithms for calibrating
TCEs, ICEs, and CCEs in Algorithms 4 to 6, respectively.

identifying and rejecting drifting examples 133

Algorithm 5: Inductive Conformal Evaluator (ICE)
Input: Z = Hz0, z1, . . . , zn−1I, n training examples; Z∗ = Hz∗0 , z∗1 , . . .I, stream of test examples; A, NCM for

producing nonconformity scores; m, number of examples to use for calibration
Output: Stream of boolean decisions 0 = reject, 1 = accept

Calibration Phase

1 P← 0 ; Ŷ ← 0 ; i← 0
2 Ztr ← Hz0, z1, . . . , zn−m−1I
3 Zcal ← Hzn−m, zn−m+1, . . . , zn−1I
4 foreach z′ of Zcal do
5 g← Fit (Zcal \ Hz′I)
6 ŷ← Ŷi ← g(z′) . Predicted label
7 Zcal

ŷ ← Hz ∈ Zcal : z.y = ŷI . Bag of examples with same label

8 αz′ ← A(Zcal
ŷ , z′) . Nonconformity score

9 S← HA(Zcal
ŷ \ HzI) : z ∈ Zcal

ŷ I . Nonconformity scores for bag elements

10 pz′ ← |α∈S : α>=αz′ |
|S| . Credibility p-value

11 Pi ← pz′

12 i← i + 1
13 end
14 t∗ ←Transcend.FindThresholds (Z, Ŷ , P)

Test Phase

15 g← Fit (Ztr)

16 foreach z∗ of Z∗ do
17 ŷ← g(z∗) . Predicted label for test example
18 Zcal

ŷ ← Hz ∈ Zcal : z.y = ŷI . Bag of training examples with same label

19 αz∗ ← A(Zcal
ŷ , z∗) . Nonconformity score

20 S← HA(Zcal
ŷ \ HzI) : z ∈ Zcal

ŷ I . Nonconformity scores for bag elements

21 pz∗ ← |α∈S : α>=αz∗ |
|S| . Credibility p-value

22 if Pz∗ < t∗ŷ then emit 0 else emit 1

23 end

134 machine learning for security in hostile environments

Algorithm 6: Cross-Conformal Evaluator (CCE)
Input: Z = Hz0, z1, . . . , zn−1I, n training examples; Z∗ = Hz∗0 , z∗1 , . . .I, stream of test examples; A, NCM for

producing nonconformity scores; k ∈ { 2t + 1 : t ∈N }, number of folds
Output: Stream of boolean decisions 0 = reject, 1 = accept

Calibration Phase

1 P← Ŷ ← G ← t∗ ← 0 ; i← j← 0
2 partition Z equally into { Z′0, Z′1, . . . , Z′k−1 }
3 foreach j of { 0, 1, . . . , k− 1 } do
4 foreach z′ of Z′j do
5 g← Fit (Z′j \ Hz′I)

6 ŷ← Ŷj,i ← g(z′) . Predicted label
7 Z′jŷ ← Hz ∈ Z′j : z.y = ŷI . Bag of examples with same label

8 αz′ ← A(Z′jŷ , z′) . Nonconformity score

9 S← HA(Z′jŷ \ HzI) : z ∈ Z′jŷ I . Nonconformity scores for bag elements

10 Pj,i ← |α∈S : α>=αz′ |
|S| . Credibility p-value

11 i← i + 1
12 end
13 Gj ← Fit (Z \ Z′j)

14 T∗j ←Transcend.FindThresholds (Z′j , Ŷj, Pj)

15 end

Test Phase

16 s← 0
17 foreach z∗ of Z∗ do
18 foreach j of { 0, 1, . . . , k− 1 } do
19 ŷ← Gj(z∗) . Predicted label for test example
20 Z′jŷ ← Hz ∈ Z′j : z.y = ŷI . Bag of training examples with same label

21 αz∗ ← A(Z′jŷ , z∗) . Nonconformity score

22 S← HA(Z′jŷ \ HzI) : z ∈ Z′jŷ I . Nonconformity scores for bag elements

23 pz∗ ← |α∈S : α>=αz∗ |
|S| . Credibility p-value

24 if Pz∗ ≥ T∗jŷ then s← s + 1 . Track positive evaluations

25 end
26 if s < k/2 then emit 0 else emit 1 . Majority vote for final decision
27 end

identifying and rejecting drifting examples 135

0

00

0.2

(a) First fold

0

0

0

0

(b) Second fold

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

(c) Third fold

0.2

0.4

0.6

0.8

1.0

0.0
Correct Incorrect Correct Incorrect

(d) Alpha assessment

Figure 6.4: Thresholding ap-
plied to a linear SVM with
approx-TCE (3 folds). P-values,
shown above or below each
dashed left-out calibration
point, are calculated using
the negated absolute distance
from the decision boundary as
an NCM. The shaded regions
capture points which are more
nonconform with respect to
the predicted class (blue for
class , red for class #). The
alpha assessment (d) shows
the distribution of p-values
and per-class thresholds de-
rived from Q1 of the correctly
classified points.

6.6 Sound and Practical Transcendent

Once p-values are calculated, thresholds are derived to decide
when to accept or reject new test examples. Here we revise and
formalize the strategy used in Transcend [139] and propose a more
efficient search strategy.

6.6.1 Calibration Phase

The first phase of Transcend [139] is the calibration procedure
which searches for a set of per-class credibility thresholds T =

{ τy ∈ [0, 1] : y ∈ Y } with which to separate drifting from non-
drifting points. Given that low credibility represents a violation
of conformal prediction’s assumptions, these points are likely to
be misclassified by the underlying classifier that similarly relies
on the i.i.d. assumption. Note that thresholds can be found with
different optimization criteria and it is also possible to threshold
on a combination of credibility and confidence, which we explore
in Section 6.7.3.

Threshold calibration determines
how low a credibility should
signal drift...

Calibration aims to answer the question: “how low a credibility
is too low?”, by analyzing the p-value distribution of points in a
representative, preferably stationary, environment such as the train-
ing set. Which points are selected as calibration points depends on
the underlying conformal evaluator, and this comes with various
trade-offs (see Section 6.5). Typically, each calibration point (or par-
tition of the calibration set) is held out and the underlying classifier
trained on the remaining points. Then a class is predicted for the
calibration point(s) with p-values calculated with respect to that
predicted class. This process is repeated until all calibration points
are assigned a corresponding p-value. Using the ground truth,
these p-values can be partitioned into correct and incorrect predic-
tions that should be separated by T . Methods to find an effective
T can be manual (e.g., picking a quartile visually using an alpha
assessment) or automated (e.g., grid search).

Figure 6.4 shows an example of the Transcend [139] threshold-
ing procedure on a toy dataset composed of two classes: and
#. A linear SVM is paired with a TCE (Section 6.5) to generate

136 machine learning for security in hostile environments

NCMs and p-values for the binary classification with rejection task.
The decision boundary is depicted as a solid line and margins are
drawn through support vectors with dotted lines. Due to the use of
approximate TCE, the dataset is partitioned into folds, where each
fold leaves out four points for calibration and trains on the remain-
der. The three folds are depicted in Figure 6.4 (a–c). Calibration
points are shown with dotted outlines and are faded for class .

In each fold, a p-value is calculated for each calibration point
as the proportion of other objects that are at least as dissimilar to
the predicted class as the calibration point itself. In the linear SVM
setting shown, less similar objects are those closest to the decision
boundary (i. e., those with a higher NCM) residing in the shaded
area between the decision boundary and the parallel line intersect-
ing the point (blue for class and red for class #). The calculated
p-values are shown aligned above or below each calibration point.

...and tries to separate correct vs.
incorrect prediction p-values on
calibration data.

To evaluate how appropriate an NCM is for a given model, the
p-values can be analyzed with an alpha assessment. Here the distri-
bution of p-values for each class are divided into groups depending
on whether the calibration point was correctly or incorrectly pre-
dicted as that class. Given that there may not be enough incorrectly
classified examples to perform the assessment with, it is standard
to perform an alpha assessment in a non-label-conditional manner,
using p-values computed with respect to all classes, not just each
point’s predicted class. The greater the margin separating the distri-
butions of correct and incorrect p-values, the better suited an NCM
is for a model. The alpha assessment in Figure 6.4 (d) shows the
distribution of p-values for correctly and incorrectly predicted cal-
ibration points for classes and #. Given the size of the example
dataset, the assessment is computed in a label-conditional manner
and the threshold is set at Q1 of the p-values for correctly classi-
fied points (more insight into threshold search strategies can be
found in Section 6.6.4). Test points generating p-values below this
threshold will be rejected.

6.6.2 Test Phase

P-values of new test objects are
compared to the threshold of the
predicted class, points above the
threhold are accepted.

At test time, there are |Y|+ 1 outcomes. When a new testing object
z∗ arrives, its p-value pŷ

z∗ is calculated with respect to the predicted
class ŷ (label conditional). If pŷ

z∗ < τŷ, the threshold for the pre-
dicted class, then the null hypothesis—that z∗ is drifting relative
to the training data and does not belong to ŷ—is approved and the
prediction rejected. If pŷ

z∗ ≥ τŷ, the prediction is accepted and the
object classified as ŷ.

Figure 6.5 follows on from the calibration example above. Fig-
ure 6.5 (a) illustrates the NCM being used: the negated absolute
distance from the hyperplane. In Figure 6.5 (b), a new test example
B appears and is classified as class #. The p-value p#B = 0.714 is
calculated as the proportion of points belonging to # with equal or

identifying and rejecting drifting examples 137

-2

-2

-2
-3

-4

-7 +2

+3

+3

+5
+7

-3

-5

-7
-3

-2-3

-7

-2

-4

-2

+2

-5

-5

(a) Distances and NCMs

-4

-2

-5

-7
-3

-2-3

-7

-2

-4

-2

-5

-3

-5

0.714

(b) P-value of new point

0.2

0.4

0.6

0.8

1.0

0.0
Correct Incorrect Correct Incorrect

(c) Threshold comparison

Figure 6.5: Test-time procedure
applied to a linear SVM and
calibrated Transcend [139] with
distances from hyperplane and
corresponding nonconformity
scores shown in (a). In (b) a
new test point is classified as
class #. The p-value is cal-
culated as the proportion of
points belonging to # with
equal or greater nonconfor-
mity scores than the new point
(shaded region). In (c), the new
point falls above the thresh-
old for class # as derived
during the calibration phase
(Figure 6.4) and is accepted.

greater nonconformity scores than B. Finally, Figure 6.5 (c) shows
p#B compared against the threshold τ# and, as p#B ≥ τ#, the predic-
tion is accepted.

6.6.3 Rejection Cost

What happens to rejected points depends on the rest of the detec-
tion pipeline. In a simple setting, rejected points may be manually
inspected and labeled by specialists. Alternatively, they may con-
tinue downstream to further automated analyses or to other ML
algorithms such as unsupervised systems. In all cases there will
be some cost associated with rejecting predictions. When choosing
rejection thresholds, it is vital to keep this cost in mind and weigh it
against the potential performance gains.

As we outlined in Chapter 5, our Tesseract framework defines
three important metrics to use when tuning or evaluating a system
for mitigating time decay.

Performance ensures that robustness against concept drift is mea-
sured appropriately depending on the end goal (e.g., high F1 score
or high TPR at an acceptable FPR threshold).

Quarantine cost measures the cost incurred by rejections. This
is important for putting the performance of kept elements in
perspective—there will often be a trade-off between the amount
of rejections and higher performance on kept points. Rejection incurs some cost, so

finding good thresholds is key...Labeling cost measures the manual effort needed to find ground
truth labels for new points. While this is more pertinent to retrain-
ing strategies, it is related to the overhead associated with rejection
as many may need to be manually labeled. As an example, Miller
et al. [194] estimate that the labeling capacity for an average com-
pany is 80 samples per day.

6.6.4 Improving the Threshold Search

Here we model the calibration procedure as an optimization prob-
lem for maximizing a given performance metric (e.g., F1, Precision,
or Recall of kept elements). Usually this maximization is subject to
some constraint on another metric, for example, it is trivial to attain

138 machine learning for security in hostile environments

Algorithm 7: Transcendent threshold calibration using random search

Input: Y ∈ Yn, ground truth labels for n examples; Ŷ ∈ Yn, predicted labels for n examples; P ∈ Rn×|Y|,
per-class p-values for n examples

Parameters: m ∈ R, maximum number of iterations; F : Y × Ŷ × P −→ R, performance measure to optimize
(e.g., F1); G : Y × Ŷ × P −→ R, performance measure to constrain (e.g., kept examples); C ∈ R,
lower bound for constrained measure G

Output: t∗ ∈ [0, 1]|Y|, a vector of per-class thresholds

1 t∗ ← 0 ; counter← 0

2 while counter < m do
3 t $←− [0, 1]|Y| . Pick random thresholds
4 if F (Y , Ŷ , P; t) > F (Y , Ŷ , P; t∗) and G(Y , Ŷ , P; t) ≥ C then
5 t∗ ← t
6 else if F (Y , Ŷ , P; t) = F (Y , Ŷ , P; t∗) and G(Y , Ŷ , P; t) > G(Y , Ŷ , P; t∗) then
7 t∗ ← t
8 counter← counter + 1

9 end
10 return t∗

high F1 performance in kept elements by accepting very few high
quality predictions, but this will cause many correct predictions to
be rejected.

Formally, given n calibration points, we represent this as:

arg max
T

F (Y, Ŷ, P; T)

subject to G(Y, Ŷ, P; T) ≥ C ,
(6.6)

where Y and Ŷ are n-dimensional vectors of ground truth and
predicted labels respectively, P is a |Y| × n-dimensional matrix of
calibration p-values and T = { τy ∈ [0, 1] | y ∈ Y } is the set
of thresholds. The objective function F maps these inputs to the
metric of interest in R, for example F1 of kept elements, while G
maps to the metric to be constrained, such as the number of per-
class rejected elements. C is the threshold value that bounds the
constraint function. ...so we propose a random search

strategy to improve on the expen-
sive grid search of the original.

Given this formalization, we propose an alternative random
search strategy to replace the exhaustive grid search used in the
original paper [139]. In the exhaustive grid search, each possible
combination of thresholds over all classes is tested systematically,
considering some fixed range of variables V = {v : v ∈ [0, 1]}. How-
ever, this suffers from the curse of dimensionality [31], resulting in
|V||Y| total trials, growing exponentially with the number of classes.
Additionally, reducing the granularity for V increases the risk of
‘skipping’ over an optimal threshold combination. Similarly, often
many useless threshold combinations are considered (where one is
either too high or too low). This failure to evenly cover subspaces of
interest worsens as the dimensionality increases [33], making it es-
pecially problematic for multiclass classification. The granularity at
values are chosen for V can be chosen manually based on intuition
and past experience, however this results in experiment parameters
which are difficult to reproduce and transfer to other settings.

identifying and rejecting drifting examples 139

(a) Training [139] (b) Test [139] (c) Training (d) Test, 1 year (e) Test, 2 years (f) Test, 3 years (g) Test, 4 years

Figure 6.6: Frequency distri-
butions of features depicting
covariate shift between training
and test malware examples.
The original data [139] dis-
played in (a) and (b), shows a
sudden and significant shift,
while our data, displayed in
(c–g), shows a more subtle
drift occurring over time.

It has been shown for hyperparameter optimization that random
search is able to find combinations of variables at least as opti-
mal as those found with full grid search over the same domain,
at a fraction of the computational cost [33]. We apply these find-
ings to the threshold calibration and replace the exhaustive grid
search with a random search (Algorithm 7). We choose random
combinations of thresholds in the interval [0, 1], keeping track of the
thresholds that maximize our chosen metric given the constraints
(see Section 6.6.4). The search continues until either of two condi-
tions are met. A limit is set on the number of iterations, determined
by the time and resources that are available for the calibration. In-
tuitively a higher limit will increase the likelihood of finding better
thresholds and so acts as the upper bound of the optimization.
Secondly, a stop condition can be set. In this work we consider a
no-update approach in which the search will stop once a fixed point
is found, i. e., if there is no improvement to performance after a
certain number of consecutive iterations. Note that this search can
be parallelized. We empirically compare the two search strategies
in Section 6.7.4.

6.7 Experimental Evaluation

We evaluate our novel evaluators when faced with a gradual con-
cept drift caused by the evolution of real malicious Android apps
over time (Section 6.7.2), the performance gained by including
confidence scores (Section 6.7.3), how our random search imple-
mentation fares against exhaustive search (Section 6.7.4), how the
evaluators compare to alternative methods (Section 6.7.5), and per-
form on PE and PDF malware domains (Section 6.7.6).

6.7.1 Experimental Settings

To evaluate, we build
Transcendent, encompassing
the original functionality and our
new proposals...

Prototype We develop a prototype of Transcendent that encom-
passes the functionality of the original work, Transcend [139], as
well as our new proposals. The prototype is implemented as a
Python library that aims to be familiar to users of popular ML
frameworks such as scikit-learn [221]. We release the code as open
source and make it available to other researchers (details in the
front matter). Note that this is the first publicly available implemen-
tation of Transcend [139] in any form.

140 machine learning for security in hostile environments

Dataset We first focus on malware detection in the Android do-
main. We sample 232,848 benign and 26,387 malicious apps from
AndroZoo [8]. This allows us to demonstrate efficacy when faced
with a surreptitious concept drift typical to mobile malware. The ...applied to a 5 year dataset of

Android malware containing
232,848 goodware and 26,387
malware...

apps span 5 years, from Jan 2014 through to Dec 2018. We use the
Tesseract framework to carry out temporal evaluations, ensuring
that Tesseract’s constraints are accounted for to remove sources of
spatial and temporal experimental bias. Training and calibration are
performed using apps from 2014 and testing is evaluated over the
concept drift that occurs over the remaining period on a month-by-
month basis.

Eliminating Sampling Bias The original evaluation of Transcend [139]
artificially simulated concept drift by fusing two datasets: Drebin [19]
and Marvin [174], a process which may have induced experimental
bias [20] and made it easier to detect drifting examples. Figure 6.6
shows a visibly significant covariate shift in the distribution of
features for training and test malware examples from Jordaney
et al. [139], with a Kullback-Leibler (KL) divergence [157]—an
unbounded measure of distribution difference—of 696.66. The ...containing realistic drift pat-

terns...covariate shift in our dataset is much more subtle over time, with
an average KL divergence of 189.55 between each training and test
partition. From this we conclude that the distributions were sig-
nificantly more different in the original evaluation than would be
expected in realistically occurring concept drift, which would have
made it easier to detect drifting examples.

Classifier For the underlying classifier, we use Drebin [19] which
we earlier showed can achieve state-of-the-art performance if a re-
training strategy is used to remediate concept drift (see Chapter 5). ...with Drebin as the underlying

classifier...Due to this, we hypothesize that if Transcend [139] is used to reject
drifting points, Drebin will be able to classify the remaining points
with high accuracy. Drebin uses a linear SVM and a binary feature
space where components (activities, permissions, URLs, etc) are
represented as present or absent.

Calibration To optimize the thresholding, we maximize the F1 of all
kept elements for a rejection rate less than 15%. These metrics are
computed in aggregate for each time period of the temporal eval-
uation. On our dataset, this would amount to an average rejection
of ~20 samples a day, well below the estimated labeling capacity
of 80 a day suggested by Miller et al. [194]. However, we note that ...and calibrated to maximize F1-

Score given a reasonable rejection
rate.

these constraints may need to be adjusted according to specific op-
erational requirements, for example, it may be more appropriate to
minimize the rejection rate while sacrificing F1 for kept elements.
For the random search we use 100,000 random iterations with early
stopping after 3,000 consecutive events without improvement. For
approx-TCE and CCE we calibrate using k = 10 folds.

identifying and rejecting drifting examples 141

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

Metric (baseline) Metric (kept) Metric (rejected) Rate of drifting malware Rate of drifting goodware Quarantined

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) F1-Score, Approx-TCE w/ credibility

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) F1-Score, ICE w/ credibility

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) F1-Score, CCE w/ credibility

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Precision, Approx-TCE w/ credibility

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e) Precision, ICE w/ credibility

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) Precision, CCE w/ credibility

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(g) Recall, Approx-TCE w/ credibility

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(h) Recall, ICE w/ credibility

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(i) Recall, CCE w/ credibility

Figure 6.7: Performance for
the three proposed conformal
evaluators (columns) without
rejection (dashed gray), and
for accepted (�-blue) and re-
jected (#-red) examples. Bars
show the proportion of rejected
elements each period, while
the x and o markers show the
proportion of ground truth mal-
ware and goodware identified
as drifting, respectively.

6.7.2 Novel Conformal Evaluators

Here we compare the novel conformal evaluators of Transcendent.
As vanilla TCE is not feasible for this experiment setting due to the
size of the training set (Section 6.5), we use approx-TCE as a stand-
in, however we provide a minimal experiment in Section 6.7.7 to
show that the expected performance difference between vanilla TCE
and our evaluators is negligible.

Performance Metrics Figure 6.7 shows the the F1, Precision, and
Recall (rows 1–3) for each of the novel evaluators (columns). The
middle dashed line shows the baseline performance when no rejec-
tion is enforced. This is the performance decay caused by concept
drift present in the dataset that results from an evolving malicious
class. Note that classifiers degrade rapidly, becoming worse than
random in under one year. We compare the performance of

our new evaluators...The upper solid line shows the performance of kept elements,
those with test p-values that fall above the threshold of their pre-
dicted classes. While decay is still present, approx-TCE and ICE
are able to maintain F1 > 0.8 for two years, doubling the lifespan
of the model. Note that the sudden drop in performance of the last
three months is likely an artifact of the fewer examples crawled by

142 machine learning for security in hostile environments

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

Metric (baseline) Metric (kept) Metric (rejected) Rate of drifting malware Rate of drifting goodware Quarantined

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) F1-Score, Approx TCE w/ cred + conf

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) F1-Score, ICE w/ cred + conf

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) F1-Score, CCE w/ cred + conf

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) F1-Score, Approx-TCE w/ probabilities

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e) F1-Score, ICE w/ probabilities

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) F1-Score, CCE w/ probabilities

Figure 6.8: Performance for
the three proposed conformal
evaluators (columns) using al-
ternative quality metrics, with-
out rejection (dashed gray),
and for accepted (�-blue) and
rejected (#-red) examples. Bars
show the proportion of rejected
elements each period, while
the x and o markers show the
proportion of ground truth mal-
ware and goodware identified
as drifting, respectively.

AndroZoo in those months.
The lower solid line shows the performance of rejected ele-

ments. Low metrics mean the rejected elements would have been
incorrectly classified by the underlying classifier and were right-
fully rejected, while high metrics means rejections were erroneous.
Approx-TCE and ICE have F1, Precision, and Recall of 0 for rejected
elements for every test month meaning that all rejected elements
would have been misclassified.

The result of CCE differs in that it is less conservative in its re-
jections. The performance of kept elements is much higher, but
also slightly higher for rejected elements, indicating that a small
proportion of rejected elements would have actually been correctly
classified. We observe that this conservatism can be increased or
decreased by modifying the conditions of the majority vote. If more
folds are required to agree before a decision is accepted, the CCE
will be more conservative, rejecting more elements. If less folds are
required, more elements will be accepted. In this respect, CCE of-
fers an alternative dimension of tuning in addition to the threshold
optimization. Additionally, this is parameter can be altered during ...showing that they can more

than double the lifetime of the
model...

a deployment, rather than being set at calibration. This allows for
some adaptability, such as when the cost of False Negatives is very
high (e.g., not alerting security teams to attacks in network intru-
sion detection), or when the cost of False Positives is very high (e.g.,
withholding benign emails in spam detection, or disabling legiti-
mate user accounts in fake account detection). A further empirical
analysis of the effect of the majority vote conditions is included
in Section 6.8.1

Rejection Rates Gray bars show the proportion of rejected test el-
ements. In each case, rejections begin close to the rate used for

identifying and rejecting drifting examples 143

Approx-TCE ICE CCE

Baseline
AUT(F1 w/ credibility, 48m) .480 .440 .483

AUT(F1 w/ cred + conf, 48m) .480 .440 .483

AUT(F1 w/ probability, 48m) .456 .405 .455

Kept Elements
AUT(F1 w/ credibility, 48m) .829 .762 .950

AUT(F1 w/ cred + conf, 48m) .822 .887 .962

AUT(F1 w/ probability, 48m) .531 .388 .532

Rejected Elements
AUT(F1 w/ credibility, 48m) .000 .000 .064

AUT(F1 w/ cred + conf, 48m) .000 .000 .063

AUT(F1 w/ probability, 48m) .410 .426 .410

Table 6.2: AUT using different
quality metrics: credibility,
credibility with confidence,
and probabilities (cf. Fig-
ures 6.7 and 6.8). We aim to
maximize the metrics of kept
elements and minimize the
metrics for rejected elements.

calibration before slowly rising each year, averaging 26.45 samples
per day. While rejection rates may appear high, these are symp-
tomatic of rising concept drift and deteriorating performance in the
underlying classifier and are often preferable to taking incorrect
actions on False Positives and False Negatives. In an extreme case
where a classifier always predicts the incorrect label, rejection rates
could reach 100% but the F1 of rejected elements would be 0%. The
gray markers show the proportion of ground truth malware and
goodware that are rejected each period, illustrating the evaluators’
perception of drift in that class. Strikingly, for our evaluators the
drift rate of the malicious class is inversely correlated to the perfor-
mance loss in the baseline, while the drift rate for goodware is rela-
tively stable. This supports our hypothesis that performance decay ...and demonstrating how drift is

driven by the malicious class...is mostly driven by evolution in the malicious class. We reiterate
that in the case of Approx-TCE and ICE, the low F1 of rejected ele-
ments indicates that all of the rejected malware would have evaded
the classifier if they had not been identified as drifting.

Runtime The runtime of the conformal evaluators during this
experiment match what would be expected from their relative
complexities (cf. Table 6.1). The ICE is the quickest at 11.5 CPU
hours. The CCE took 35.6 CPU hours, but our implementation is
parallelized resulting in a wall-clock time identical to the ICE. The
Approx-TCE took 46.1 CPU hours. As discussed, vanilla TCE was
computationally infeasible, but we estimate a runtime of 1.9 CPU
years, considering that the time required to fit the underlying clas-
sifier once is ~10 minutes and the classifier must be trained once for
each training example. We conclude that the ICE is the most useful ...while drastically reducing the

runtime of the original.for settings where resources are limited or models with a rapid iter-
ation cycle (e.g., daily), while the CCE offers greater confidence and
flexibility at a slightly higher computational cost.

We conclude that the ICE is the most useful for settings where
resources are limited or models with a rapid iteration cycle (e.g.,
daily), while the CCE offers greater confidence and flexibility at a
slightly higher computational cost.

144 machine learning for security in hostile environments

6.7.3 Credibility, Confidence, and Probabilities

Here we compare the performance under different quality metrics.
The exact performance over time for all settings discussed in this
subsection is reported in Table 6.2. We compare our evaluators using

different quality metrics other
than credibility alone...

Credibility with Confidence Intuitively, including confidence thresh-
olds when evaluating a classifier prediction would be beneficial as
confidence represents how certain the classifier is in its own pre-
diction. However, as credibility is the main indicator that i.i.d. has
been violated, and thus that concept drift is occurring, it is unclear
what further gain confidence could provide. Here we test this by
evaluating the conformal evaluators under the same conditions
as Section 6.7.2, using per-class thresholds for both credibility and
confidence.

Figure 6.8 compares the F1 for each conformal evaluator (columns)
using alternative thresholding metrics (compared to row 1 of Fig-
ure 6.7). The upper blue line shows the performance of kept ele-
ments while the lower red line shows the performance of rejected
elements. The gray dashed line depicts the baseline performance
when no rejection mechanism is used. ...showing that confidence can

stabilize results at a higher cost...The first row shows the F1 when confidence is included. Per-
formance for the approx-TCE and CCE is relatively unchanged,
but is markedly improved for the ICE with degradation postponed
much longer than before. The confidence appears to restore some of
the statistical information lost by using only a small amount of the
training data for calibration.

However, the computation required to find thresholds is higher
than with credibility only—equivalent to doubling the number of
classes. We conclude that the performance gain from including
confidence is situationally dependent; although it will improve the
accuracy of an ICE, a CCE will often provide the same accuracy
with comparable calibration time. ...and that simple probabilities are

ineffective for thresholding.

Probabilities The latter row of Figure 6.8 shows the F1 when the
classifiers’ output probabilities are used for thresholding, rather
than generating per-class p-values for each calibration and test
point. For each evaluator, the same training and calibration split
is used as with p-values, to ensure a fair comparison. The plot
shows probabilities alone offer a very small improvement for kept
elements over the baseline in the first year, becoming increasingly
volatile as the concept drift becomes more severe. Additionally, the
perceived drift rate for each class has no relation to the baseline
performance loss, indicating that the root cause of the drift is not
identified. This shows the statistical support offered by the confor-
mal evaluator’s p-value computation is significant and justifies the
additional computational overhead that it induces.

identifying and rejecting drifting examples 145

FPs FNs Prec. Rec. F1 #Trials

No rejection 3,529 19,486 0.98 0.92 0.95 N/A
Full grid 2,187 0 0.99 1.00 0.99 1,317,520

Random 3,259 0 0.98 1.00 0.99 10,000

Table 6.3: Performance of op-
timal thresholds discovered
using a full grid search vs. ran-
dom search. Random search
discovers thresholds equivalent
to the full grid search but with
two orders of magnitude fewer
trials (Section 6.7.4).

6.7.4 Full Grid Search vs. Random Search

Here we evaluate our random search implementation (Section 6.6.4)
compared to the full grid search used in the original proposal [139].
We show the random search can find high quality calibration
thresholds more efficiently than the full search.

Our new threshold search reduces
the cost of finding thresholds by
two orders of magnitude.

Due to the full grid search cost, here we train and calibrate on
1 month of data and test on the remaining 59 months using an
approx-TCE with 10 folds. We maximize F1 for an acceptable re-
jection rate of less than 15%. To ensure the baseline discovers high
quality thresholds we use a fine granularity grid covering 1,317,520

combinations of thresholds. For random search we set an upper
limit of 10,000 trials.

Table 6.3 compares the performance without rejection, with
rejection thresholds from the full grid search, and with rejection
thresholds from random search. Note there is no significant perfor-
mance difference between the two strategies, but the random search
is able to cover the same search space with two orders of magnitude
fewer trials. We observe that the full grid search makes erroneous

We compare against two prior
approaches with mechanisms
similar to Transcendent...

assumptions on the distribution of quality thresholds which the
random search does not. Additionally, while the random search
allows for a variety of stopping conditions, the only mechanism to
control the length of the full grid search is the size of the interval to
search and the granularity of the search steps—which are difficult
to choose beforehand.

6.7.5 Comparison to Prior Approaches

To provide further context on the performance of Transcendent, we
compare against two closely related state-of-the-art approaches: Li-
nusson et al. [175] (which we denote CP-Reject) and DroidEvolver [316].

...CP-Reject [175] which also
builds on conformal prediction...

CP-Reject [175] The first approach is a recent method for perform-
ing rejection using conformal prediction. For a given test set and
hyperparameter k, CP-Reject aims to output the largest possible set
of predictions containing on average no more than k errors, while
rejecting test objects for which it is too uncertain. The training and
calibration dataset splits are the same as we use for the ICE setting;
however while Transcendent makes decisions on individual test
objects as they appear, CP-Reject operates a posteriori on a batch
of test inputs and predictions. Given this advantage, to ensure a
fair comparison we test on each month with k set to the 85th per-
centile which ensures a rejection rate of 15%—the same rejection

146 machine learning for security in hostile environments

rate Transcendent is calibrated for. The underlying classifier is a
random forest classifier with 100 trees and the conformal prediction
NCM is the maximum margin between the output probability for
the predicted class and the output probabilities for all other classes.

DroidEvolver [316] The second approach is a state-of-the-art An-
droid malware detector designed for drift adaptation, but that
includes a rejection component, in which the drift identification
mechanism is inspired by the original Transcend [139]. DroidEvolver
is built on an ensemble of five linear online learners, with a weighted
sum as the ensemble decision function. For each new test object a

...and DroidEvolver [316] which
uses an ensemble of online learn-
ers to adapt to drift...

juvenilization indicator (JI) score is computed per model as the pro-
portion of apps in a fixed-size buffer of previously encountered
apps, of the same class, that have decision scores greater than the
new object. An object is marked as drifting when the JI score falls
outside of a precalibrated range and the corresponding decisions
are rejected, i. e., excluded from the weighted sum which is used
to pseudo-label and update with the drifting point. The ongoing
performance of the system relies on the quality of the pseudo-labels
and thus indirectly on the quality of the drift identification. The JI
scores are very similar to the credibility p-values from conformal
evaluation, with the computational complexity of full TCE being
addressed by using the small fixed-size app buffer: drift identifica-
tion should be effective so long as the app buffer is representative
of the overall data population. Due to this relationship, it is infor-
mative to compare against Transcendent.

Results Figure 6.9 shows the F1 performance of CP-Reject and
DroidEvolver trained and calibrated on the first year of the dataset
and tested on the two subsequent years at monthly intervals. These
can both be compared to the first 24 months of ICE and CCE results
of Figure 6.7 (b–c).

...but neither are as successful at
identifying drifting examples.

For CP-Reject, the similar F1 performance for kept, rejected, and
baseline predictions indicate that it is unable to distinguish between
drifting and non-drifting points. Although it may effectively reject
low-quality predictions in a stationary environment, conformal
prediction relies heavily on the exchangeability assumption, which
is violated in this dataset. To obtain a prediction, CP-Reject fol-
lows conformal prediction principles and outputs the class with the
highest credibility (see Section 6.4.3), but we argue this output is
not trustworthy under drifting conditions. Conversely in conformal
evaluation, by decoupling the prediction of the underlying classifier
from the rejection mechanism and directly interpreting the credibil-
ity as a measurement of drift when comparing it to the calibrated
thresholds, we can more effectively detect poor quality predictions.

While the detection performance of DroidEvolver is mediocre
on this dataset, the pseudo-labeling update mechanism manages
to stabilize the system against the impact of drift up until the last
four months. After this, performance deteriorates due to the poor

identifying and rejecting drifting examples 147

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (baseline)

F1 (kept)

F1 (rejected)

Quarantined

(a) CP-Reject [175]

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) DroidEvolver [316]

Figure 6.9: F1-Score over time
for two prior approaches
with mechanisms similar to
Transcendent (cf. Figure 6.7
(b–c)).

quality of pseudo-labels used for updating the online models—as
DroidEvolver uses predicted labels as pseudo-labels, the negative
feedback loop is difficult to recover from. Surprisingly, the drift
identification mechanism rejects more correct predictions than it
keeps for each test period. We posit that the small app buffer fails
to sufficiently represent the true app population, which may in turn
lead to the negative feedback loop in the later months. Although
much more extreme here, this informational inefficiency is also
responsible for the variability we see when using ICEs—different
dataset splits may be more or less representative of the true distri-
bution and result in better or worse accuracy, a phenomenon that is
mitigated by using a CCE.

6.7.6 Beyond Android Malware and SVMs

We also test on PDF other mal-
ware domains and classifiers...

While Transcendent and conformal evaluation are agnostic to the
underlying classifier and feature space, we have so far focused on
detecting Android malware with a linear SVM. Here we demon-
strate the performance beyond this setting. To simplify the axes of
comparison, we apply an ICE to each setting, using credibility p-
values and random search for threshold calibration with the same
constraints as before.

Windows PE malware with GBDT We take examples from the
EMBER v2 dataset [11] spanning 2017, containing 47,888 benign
and 69,202 malicious executables (labeled as having 40+ VirusTotal
AV detections). The feature space contains a diverse set of features
which can be categorized as either parsed features (e.g., header
information), histograms (e.g., byte-value histograms), and print-
able strings (e.g., URL frequency). As the underlying classifier, we
use gradient boosted decision trees (GBDT) [106] as in Anderson
and Roth [11], and for the NCM we use the output probability for
the predicted class, negated for positive predictions. We train on
executables from the first five months and test on the remaining.

...Windows PE malware using a
GBDT...

...and PDF malware using an RF
classifier...

148 machine learning for security in hostile environments

1 2 3 4 5 6 7

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (baseline)

F1 (kept)

F1 (rejected)

Rate of drifting malware

Rate of drifting goodware

Quarantined

(a) Windows PE, ICE, credibility

1 2 3 4 5 6 7

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Windows PE, ICE, probabilities

1 4 7 10 13 16 19 22 25 28 31 34

Testing period (day)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (baseline)

F1 (kept)

F1 (rejected)

Rate of drifting malware

Rate of drifting goodware

Quarantined

(c) PDF, ICE, credibility

1 4 7 10 13 16 19 22 25 28 31 34

Testing period (day)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) PDF, ICE, probabilities

Figure 6.10: F1-Scores for
EMBER Windows PE mal-
ware [11] using GBDT (top
row) and Hidost PDF mal-
ware [272] using RBF SVM
(bottom row).

PDF malware with RF We use examples from the Hidost dataset [272]
spanning five weeks in Aug–Sep 2012, consisting of 181,792 benign
and 7,163 malicious files (labeled as having 5+ VirusTotal AV de-
tections). The feature space is created by statically parsing the PDF
files to extract structural paths in the PDF hierarchy that map to
boolean or numeric feature values, such as the presence of cer-
tain PDF objects or metadata such as the number of pages. As the
underlying classifier we use a random forest (RF) classifier follow-
ing Srndic and Laskov [272]. As the NCM we use the proportion of
decision trees that disagree with the prediction of the ensemble (as
illustrated in Figure 6.1 (e)). Interestingly, a major contribution of
the Hidost feature space in contrast to prior approaches [e.g., 271]
is that similar features are consolidated in order to be more robust
to drift. This means the distribution should be relatively stationary
compared to the Android dataset and will allow us to test whether
Transcendent is able to make effective decisions on prediction qual-
ity when drift is less severe.

Note that we are unable to find authoritative measurements for
the expected class balance for PE and PDF malware in the wild
as we are for Android malware (see Section 5.3.3), so we defer
to the class balance in the original datasets. This may result in a
slight spatial bias if the class balance is unrealistic, however all
approaches will be affected equally. Additionally, we can here ex-
amine whether the class balance affects the ability for Transcendent

identifying and rejecting drifting examples 149

1 2 3 4 5 6 7

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (baseline)

F1 (kept)

F1 (rejected)

Quarantined

(a) EMBER Windows PE malware [11]

1 4 7 10 13 16 19 22 25 28 31 34

Testing period (day)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Hidost PDF malware [272]

Figure 6.11: F1-Score of
CP-Reject [175] on alterna-
tive malware datasets.

to identify low quality predictions.

...and show that despite a different
severity of drift in each dataset...

Results The results for Windows PE malware (Figure 6.10 (a–b))
are consistent with those on Android data. Transcendent outper-
forms probabilities alone which tend to reject many otherwise
correct predictions. In particular, a large spike in drifting malware
affects month six which probabilities are unable to cope with, while
Transcendent raises the rate of rejections accordingly without mak-
ing any additional errors.

As noted earlier, the PDF dataset gives us the opportunity to
evaluate Transcendent on a relatively stationary distribution (Fig-
ure 6.10 (c–d)). As expected, thresholding using probabilities is
much more effective than it is in a drifting setting, however it
under-rejects compared to Transcendent, which is able to find
thresholds that push the F1-Score of kept predictions to 1.0 while
rejecting almost entirely incorrect predictions. Exceptions to this
are months one and nine, in which a small quantity of true positive
predictions are rejected. However this is anomalous (i. e., it does not
continue as drift increases) and could be mitigated by calibrating
with a constraint on the F1 of rejected samples rather than the F1 of
kept examples alone. From this we conclude that Transcendent is

...Transcendent still improves the
quality of accepted predictions...

useful for maximizing the potential of a high-quality robust clas-
sifier, and does not rely on relatively severe drift—as present in
the Android dataset—to detect low quality decisions. To this end
Transcendent can be combined with robust feature spaces which is
an orthogonal direction to combating concept drift.

...and outperforms CP-Reject in
both domains.

As an additional result we show in Figure 6.11 that Transcendent
outperforms CP-Reject for both domains (we exclude DroidEvolver
as it is specific to Android malware). Similar to the results on the
Android dataset (Section 6.7.5), the overall ability for CP-Reject
to distinguish between drifting and non-drifting points is poor
on the PE malware dataset. For the PDF malware dataset, which
exhibits much less drift, CP-Reject is significantly more effective,
which supports the hypothesis that it is the violation of confor-
mal prediction’s exchangeability assumption which results in the
lower performance on the Android and PE datasets. Nevertheless,

150 machine learning for security in hostile environments

TCE Approx-
TCE

ICE CCE

Baseline 0.68 0.70 0.45 0.69

Kept Elements 0.97 0.97 0.94 1.00

Rejected Elements 0.00 0.00 0.00 0.21

Table 6.4: AUT(F1, 7m) com-
paring vanilla TCE to our
novel conformal evaluators on
Windows PE malware data.
To be computationally viable,
10% of the training data was
randomly sampled to use for
training and calibration.

Transcendent with credibility (and even probabilities) outperforms
CP-Reject in this setting also (cf. Figure 6.10 (c)).

6.7.7 Full Vanilla TCE on EMBER Subset

Given the intractability of run-
ning a full-scale TCE experi-
ment...

A full scale comparison to the original TCE is not possible due to
its computational complexity—recall that one classifier must be
trained for each example in the training set. However, it is informa-
tive to perform a small-scale experiment as there may be settings
where the vanilla TCE is viable, and we wish to ensure that there is
no significant performance difference between vanilla TCE and our
novel conformal evaluators.

...we compare against TCE on the
Windows PE dataset utilizing
only 10% of the training split...

We perform an experiment on the Windows PE malware dataset,
where 10% of the training data is randomly sampled to use for
training and calibrating the evaluators (this is the largest subsam-
ple we can take given our resource constraints). We choose the PE
dataset over the Android dataset due to the high dimensionality
of the Android feature space that may cause instability when the
number of examples is very low, and over the PDF dataset which
is relatively stationary and may make it harder to discern perfor-
mance differences between the different evaluators. One caveat of
this subsampling is the reduced performance of the baseline for
the ICE, which is due to the reduced data available to the proper
training set, although Transcendent appears unaffected by this.

...showing comparable or im-
proved results for all our newly
proposed conformal evaluators.

Table 6.4 summarizes the F1 performance over the seven month-
long test periods using the area-under-time (AUT) metric. The
performance difference between TCE and our evaluators in terms of
distinguishing between drifting and non-drifting examples is negli-
gible, shown by the very high AUT of kept elements and very low
AUT of rejected elements. That is, there is little to no performance
sacrifice when using our evaluators over the vanilla TCE. The over-
all trends otherwise follow those in our main Android experiments
(cf. Figure 6.7).

6.8 Operational Considerations

Here we discuss some actionable points regarding the use of con-
formal evaluation and Transcendent.

Transcendent in a Detection Pipeline Transcendent has particular ap-
plications in detection tasks where there is a high cost of False Posi-
tives, (e.g., spam [206], malware [271, 19, 70], fake accounts [47, 42]).

identifying and rejecting drifting examples 151

In these cases, it may be preferable to avoid taking a decision on
low-confidence predictions or, where a gradated response is pos-
sible, diverting rejected examples towards alternative remediation
actions. Consider an example in the fake accounts setting: owners
of accounts in the set of rejected positive predictions can be asked
to solve a CAPTCHA on their next login (a relatively easy check to
pass) while the owners of accounts in the set of kept positive pre-
dictions can be asked to submit proof of their identity. Increasing

Transcendent is particularly
useful in detection tasks with a
high cost of False Positives...

rejection rates signal a performance degradation of the underlying
classifier without immediately submitting to the errors it produces,
giving engineers more time to iterate and remediate.

Operational Recommendations Based on our empirical evalua-
tion (Section 6.7), we make the following recommendations for
Transcendent deployments:

• Transcendent is agnostic to the underlying learning algorithm,
but the quality of the rejection relies on the suitability of the
NCM. Some examples of possible NCMs for different types of
classifiers are described in Figure 6.1.

• Using an ICE or CCE is preferred over TCE due to their com-
putational efficiency, and are preferred over approx-TCE due to
approx-TCE’s reliance on assumptions that may not universally
hold.

• ICEs are relatively fast and lightweight and excel when resources
are limited. CCEs make rejections with higher confidence but at
a higher computational cost.

• Thresholding with credibility alone is sufficient to achieve high
quality prediction across all conformal evaluators. While con-
fidence can improve the stability of an ICE (Section 6.7.3), it
requires greater calibration time.

• Random search is preferred over exhaustive grid search as it
finds similarly effective thresholds at a significantly lower cost. ...and we give some guidance for

such deployments.• Rising rejection rates should be interpreted as a signal that the
underlying model is degrading. This signal can be used to trig-
ger model retraining or other remediation strategies.

6.8.1 Analysis of CCE Tuning

As a further empirical analysis of the effect of the majority vote
conditions on performance, here we explore how the size of the
quorum for CCE affects the rejection decision. Figure 6.12 shows
the performance over time summarized using the area-under-time
(AUT) metric (see Section 5.5.2) for F1 (a), Precision (b), and Recall
(c). Note that Figure 6.12 omits the setting where the majority vote

152 machine learning for security in hostile environments

1 2 3 4 5 6 7 8 9

Majority Vote Quorum Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AUT(F1, 48m) (baseline)
AUT(F1, 48m) (kept)
AUT(F1, 48m) (rejected)
Quarantined

(a) AUT(F1, 48m)

1 2 3 4 5 6 7 8 9

Majority Vote Quorum Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AUT(Precision, 48m) (baseline)
AUT(Precision, 48m) (kept)
AUT(Precision, 48m) (rejected)
Quarantined

(b) AUT(Precision, 48m)

1 2 3 4 5 6 7 8 9

Majority Vote Quorum Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AUT(Recall, 48m) (baseline)
AUT(Recall, 48m) (kept)
AUT(Recall, 48m) (rejected)
Quarantined

(c) AUT(Recall, 48m)

Figure 6.12: Effect of tuning
the quorum size k of the CCE
majority vote.

must be unanimous, as the CCE eventually rejects every example—
causing F1, Precision, and Recall to be undefined for kept elements.
As more folds of the CCE are required to agree with each other
before a decision is accepted, the CCE will reject more elements. If
less folds are required, more elements will be accepted. Similarly,
the quality of the rejection lessens: more elements are rejected on
which the underlying classifier would not have made a mistake.
Tuning the majority vote conditions on the calibration set can help
find the sweet spot between the performance of kept elements, and
the quality—and volume—of rejections.

We further show how CCE can be
tuned to be more or less conserva-
tive in its rejections...

6.8.2 Guidance for Choosing Calibration Constraints

In Section 6.6.4 we formally describe the threshold calibration as an
optimization problem in which one metric of interest is maximized
or minimized given constraints on another metric. Throughout our
evaluation we focus on maximizing the F1 of kept elements, while
keeping a reasonably low rejection rate. We choose 15% after taking
into account the size of our dataset and using guidance from Miller
et al. [194] to estimate a reasonable labeling capacity.

Recall that the calibration constraints are with respect to the
calibration set which ideally exhibits minimal drift. It is clear from
our evaluation that as concept drift becomes more severe during a
deployment, constraints such as those on the rejection rate will be
surpassed to some degree. This is the desired outcome—so long as
the performance on rejected elements remains low (i. e., they would
likely be misclassified) we would rather reject drifting examples.

...and how to choose alternative
calibration settings to prioritize
different performance goals.

Figure 6.13 presents an alternative to the optimization used in
our previous experiments which is more appropriate if the rejec-
tion rate must be kept low. By finding thresholds that minimize the
rejection rate on the calibration set with F1-Score no less than 0.8,
during deployment the rejection rate stays much lower, consistently
staying below 10% even as the drift increases. Similar to how the
rejection rate begins close to the calibration constraint and then in-
creases in our previous experiments, in this setting the F1 begins
close to the calibration constraint, and then decreases. The over-
all effect here is that the ICE is more conservative in its rejections:
while the F1 of kept elements decreases as more incorrect predic-
tions are accepted, the ICE rejects only those predictions that are

identifying and rejecting drifting examples 153

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (baseline)
F1 (kept)
F1 (rejected)
Rate of drifting malware
Rate of drifting goodware
Quarantined

Figure 6.13: F1-Score of an ICE
optimized to find thresholds
minimizing the rejection rate
with F1-Score no less than 0.8.
This keeps the rejection rate
below 10% while sacrificing F1

performance on kept elements
(cf. Figure 6.7 (b)).

most likely to be incorrect, keeping the F1 of rejected elements at 0.
In summary, to estimate how many rejections will be acceptable,

we advise practitioners to consider the expected volume of incom-
ing samples, the available resources for processing quarantined
examples, and the lifetime of the classifier before being retrained
(as drift will likely increase during this period). Next they should
identify which metrics are most important, or non-negotiable, and
use these to balance the threshold optimization. As the emergence
of concept drift will likely result in the calibration values being
surpassed, a ballpark is more important than the exact values.

6.9 Related Work

Conformal evaluation is based on conformal prediction theory, a
mechanism for producing predictions that are correct with some
guaranteed confidence [253]. Additionally, the ICE and CCE are
inspired by inductive [301, 300, 211] and cross-conformal predic-
tors [302], respectively. However, conformal prediction is intended
to be used exclusively in settings where the exchangeability as-
sumption holds which makes it unsuitable for adversarial contexts
such as malware classification. In this regard, we are the first to
‘join the dots’ between the conformal prediction of Vovk et al. [301]
and the conformal evaluation of Jordaney et al. [139] and show
how the violation of conformal prediction’s assumptions is detected
and exploited by Transcend [139] to detect concept drift.

That work introduced the concept of conformal evaluation based
on conformal prediction theory and the use of p-values for cali-
brating and enforcing a rejection strategy for malware classifica-
tion. However the evaluation artificially simulated concept drift
by merging malware datasets which introduced experimental
bias [223, 20] (Section 6.7). In our experiments we sample from a

154 machine learning for security in hostile environments

single repository of applications and perform a temporal evalua-
tion to simulate natural concept drift caused by the real evolution
of malicious Android apps. Additionally, the role of confidence in
thresholding was unclear, and the use of exhaustive grid search to
find thresholds was suboptimal compared to our random search.
Most significantly, the TCE employed by the original work was not
practical for real-world deployments, which we rectify by propos-
ing the ICE and CCE.

Other works have explored alternative solutions to tackling
concept drift. As described in Section 6.7.5, Xu et al. [316] pro-
pose DroidEvolver, a malware detection system motivated by
Transcend [139] that identifies drifting examples based on disagree-
ments between models in an ensemble. As models degrade, the
examples identified as drifting are used to update the models in an
online fashion.However, we find the drift identification mechanism
is inferior to Transcendent and leads to a negative feedback loop, as
also evidenced recently by Kan et al. [143]. Other solutions solely
adapt to concept drift without using rejection: DroidOL [203] and
Casandra [204] use online learning to continually retrain the mod-
els, with API call graphs as features. Like all online-trained neural
networks, these are susceptible to catastrophic forgetting [105],
where performance degrades on older examples as the model at-
tempts to adapt to the new distribution. In Chapter 5 we present
a comparison of strategies for combating concept drift, including
rejection, incremental retraining, and online learning, illustrating
their advantages and disadvantages.

The related task of detecting adversarial examples [279, 34, 226] is
addressed by Sotgiu et al. [270], who propose a rejection strategy
for neural network-based classifiers that identifies anomalies in the
latent feature representation of an example at different layers of the
neural network. Additionally, Papernot and McDaniel [212] com-
bine a conformal predictor with a k-Nearest Neighbor algorithm
to identify low-quality predictions that are indicative of adversar-
ial inputs. However, both of these methods are restricted to deep
learning-based image classification.

6.10 Summary

Following the proposal of Transcend [139], rejection strategies have
seemed like a promising solution to the issue of concept drift. How-
ever, the theoretical soundness, optimal configurations, and real-
world practicality were unclear.

In this work we provide a thorough formal treatment of Transcend [139]
which acts as the missing link between conformal prediction and
conformal evaluation. We propose Transcendent, a superset of the
original framework which includes novel conformal evaluators
that match or surpass the original performance while significantly
decreasing the computational cost. We show Transcendent outper-

identifying and rejecting drifting examples 155

forms the existing state-of-the-art approaches while generalizing
across different malware domains and exploring realistic opera-
tional settings.

We envision these improvements will enable researchers and
practitioners alike to make use of conformal evaluation to build
rejection strategies to improve the quality of security detection
pipelines. To accommodate this, we also release our implemen-
tation of Transcendent, making Transcend [139] and conformal
evaluation available to the security community for the first time.

7 Conclusions

This thesis has explored whether machine learning is ready
to be used for security detection tasks given the hostile environ-
ments that security detectors and classifiers are deployed to. The
first part, Prologue, gave an overview of the problem, providing a
general framework for discussing classification tasks in security set-
tings and outlining fundamental concepts used to describe machine
learning in security and the security of machine learning.

The second part, Adversarial Interactions, delved deeper into the
typical hostile environment itself, and the consequences arising
from adversarial activity. We first described the different forms
of concept drift, a phenomenon resulting from adversarial activ-
ity in which the data distribution diverges from the training data
and causes detection performance to deteriorate over time. We dis-
cussed the relationship between concept shift and covariate shift to
the existence of adversarial examples: objects confidently misclassi-
fied as benign by a detector while retaining malicious functionality.
We then examined how adversarial examples—traditionally studied
in domains such as computer vision—can be realized in more con-
strained and challenging domains such as malware detection. We
demonstrated that realizable evasive Android malware is a realistic
and practical threat which also facilitates the development of strong
problem-space universal adversarial examples.

The final part, Detection in a Hostile Environment, further exam-
ined the impact of concept drift in malware detection, but also
focused on how to perform detection in spite of its negative effects.
Firstly we identified sources of experimental bias which need to be
accounted for in order to have a stable evaluation setup that more
realistically simulates a dynamic, evolving environment such as
that in malware detection. Utilizing this setup, we then proposed
an improved framework for identifying and rejecting drifting exam-
ples. This framework can be practically used to reduce the burden
of misclassifications and help analysts triage detection efforts by
quarantining evolving examples.

Given all this, we can conclude that there are numerous limitations
to the application of machine learning in security settings. The na-
ture of the security task, in which members of the positive class
actively try to evade detection, is alien compared to typical machine

158 machine learning for security in hostile environments

learning settings that have been studied in the past and results in
a number of challenges. However despite this, machine learning
remains a tantalizing solution to security problems. It’s ability to
both generalize and scale is still unparalleled and has the potential
to vastly reduce the cost of defense, freeing up resources for better
end-to-end protections. Reaching its potential, and becoming capa-
ble of secure and trustworthy deployment, will require the clever
application of new and innovative research to improve robustness
and resilience against adversarial behavior.

Core to all future research are measurement studies to describe
the properties and trends of security data over time [173, 183, 283].
These are essential for better determining the realistic conditions
for experiment evaluations—for example the work presented in
Chapter 5 would not have been possible without such studies.

The design of hardened classifiers [e.g., 77, 133] can be used to im-
prove resilience against specific threats. Orthogonal to these are ro-
bust training methods [179, 58, 59, 171] which can be extended to pro-
duce certifiably robust classifiers—models with a verifiable lower
bound on performance versus any attack of a certain strength, mak-
ing them particularly suitable for safety-critical applications.

Explainability methods can be applied in order to better under-
stand why models make the decisions they do [305, 319, 228, 287,
122]. In this way, explanations can augment the usual numerical de-
cision score by providing descriptions closer to those produced by
human analysts, investigators, and reverse engineers. Such methods
could also characterize ongoing changes in the feature distribution
in ways which are more easily interpretable to a human operator.

As concept drift occurs relative to a particular feature space, one
promising future research direction is the development of robust
feature spaces [325, 288]. Such feature spaces better capture mali-
cious semantics and have fewer redundant dimensions, giving the
attacker much less flexibility to fool the classifier by adding super-
fluous benign attributes or by obscuring their own behavior. As
they better describe the core essence of maliciousness they are less
prone to performance decay induced by changes over time.

We envision that through the invention of more robust methods,
and with ingenious engineering, the hostile environment can be
tamed to allow for machine learning’s benefits to take full effect.

Bibliography

[1] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien
Lin. Learning From Data, chapter 5. AMLBook, 2012.

[2] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen,
and DaeHun Nyang. Large-scale and language-oblivious
code authorship identification. In Proc. of the ACM Conference
on Computer and Communications Security (CCS), 2018.

[3] Shruti Agarwal, Hany Farid, Yuming Gu, Mingming He,
Koki Nagano, and Hao Li. Protecting world leaders against
deep fakes. In CVPR Workshops, pages 38–45. Computer
Vision Foundation / IEEE, 2019.

[4] Hojjat Aghakhani, Fabio Gritti, Francesco Mecca, Martina
Lindorfer, Stefano Ortolani, Davide Balzarotti, Giovanni Vi-
gna, and Christopher Kruegel. When malware is packin’
heat; limits of machine learning classifiers. In Proc. of the Net-
work and Distributed System Security Symposium (NDSS). The
Internet Society, 2020.

[5] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers,
Principles,Techniques, and Tools (2nd Edition). Addison Wesley,
2007.

[6] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and
Yves Le Traon. Are your training datasets yet relevant? -
an investigation into the importance of timeline in machine
learning-based malware detection. In Proc. of the International
Symposium on Engineering Secure Software and Systems (ESSoS),
2015. URL https://doi.org/10.1007/978-3-319-15618-7_5.

[7] Kevin Allix, Tegawendé F. Bissyandé, Quentin Jérome,
Jacques Klein, Radu State, and Yves Le Traon. Empirical
assessment of machine learning-based malware detectors for
android. Empirical Software Engineering, 2016.

[8] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and
Yves Le Traon. Androzoo: collecting millions of android apps
for the research community. In Proc. of the ACM International
Conference on Mining Software Repositories (MSR). ACM, 2016.

[9] Sumayah A. Alrwais, Xiaojing Liao, Xianghang Mi, Peng
Wang, Xiaofeng Wang, Feng Qian, Raheem A. Beyah, and

https://doi.org/10.1007/978-3-319-15618-7_5

160 machine learning for security in hostile environments

Damon McCoy. Under the shadow of sunshine: Understand-
ing and detecting bulletproof hosting on legitimate service
provider networks. In Proc. of the IEEE Symposium on Security
and Privacy (S&P), 2017.

[10] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang
Ho, Mani Srivastava, and Kai-Wei Chang. Generating natural
language adversarial examples. In Proc. of the Conference on
Empirical Methods in Natural Language Processing (EMNLP),
2018.

[11] Hyrum S. Anderson and Phil Roth. EMBER: an open dataset
for training static PE malware machine learning models.
CoRR, abs/1804.04637, 2018.

[12] Hyrum S. Anderson, Anant Kharkar, Bobby Filar, David
Evans, and Phil Roth. Learning to evade static PE machine
learning malware models via reinforcement learning. CoRR,
abs/1801.08917, 2018.

[13] Giuseppina Andresini, Feargus Pendlebury, Fabio Pierazzi,
Corrado Loglisci, Annalisa Appice, and Lorenzo Cavallaro.
INSOMNIA: Towards concept-drift robustness in network
intrusion detection. In Proc. of the ACM Workshop on Artificial
Intelligence and Security (AISec), 2021.

[14] D.A. Andriesse, J.M. Slowinska, and H.J. Bos. Compiler-
agnostic function detection in binaries. In Proc. of the IEEE
European Symposium on Security and Privacy (EuroS&P), 2017.

[15] Apple. App store stopped more than $1.5 bil-
lion in potentially fraudulent transactions in
2020. https://www.apple.com/newsroom/2021/05/

app-store-stopped-over-1-5-billion-in-suspect-transactions-in-2020/,
2021. Accessed: Sep 2021.

[16] Giovanni Apruzzese and Michele Colajanni. Evading Botnet
Detectors Based on Flows and Random Forest with Adver-
sarial Samples. In Proc. of the IEEE International Symposium on
Network Computing and Applications (NCA), 2018.

[17] Giovanni Apruzzese, Michele Colajanni, and Mirco Marchetti.
Evaluating the effectiveness of Adversarial Attacks against
Botnet Detectors. In Proc. of the IEEE International Symposium
on Network Computing and Applications (NCA), 2019.

[18] Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry
Lepikhin, Melvin Johnson, Maxim Krikun, Mia Xu Chen,
Yuan Cao, George F. Foster, Colin Cherry, Wolfgang
Macherey, Zhifeng Chen, and Yonghui Wu. Massively multi-
lingual neural machine translation in the wild: Findings and
challenges. CoRR, abs/1907.05019, 2019.

https://www.apple.com/newsroom/2021/05/app-store-stopped-over-1-5-billion-in-suspect-transactions-in-2020/
https://www.apple.com/newsroom/2021/05/app-store-stopped-over-1-5-billion-in-suspect-transactions-in-2020/

bibliography 161

[19] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo
Gascon, and Konrad Rieck. DREBIN: effective and explain-
able detection of android malware in your pocket. In Proc. of
the Network and Distributed System Security Symposium (NDSS).
The Internet Society, 2014.

[20] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander
Warnecke, Fabio Pierazzi, Christian Wressnegger, Lorenzo
Cavallaro, and Konrad Rieck. Dos and don’ts of machine
learning in computer security. In Proc. of the USENIX Security
Symposium, 2022.

[21] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bod-
den, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick D. McDaniel. Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps. In Proc. of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI).
ACM, 2014.

[22] Anish Athalye, Nicholas Carlini, and David A. Wagner. Ob-
fuscated gradients give a false sense of security: Circumvent-
ing defenses to adversarial examples. In Proc. of the Inter-
national Conference on Machine Learning (ICML), volume 80,
pages 274–283, 2018.

[23] Stefan Axelsson. The base-rate fallacy and the difficulty of
intrusion detection. ACM Transactions on Information and
System Security (TISSEC), 2000.

[24] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. In Proc. of the International Conference on Learning
Representations (ICLR), 2015.

[25] Iain M. Banks. A few notes on the culture. rec.arts.sf.

written, 1994. Archived at http://www.vavatch.co.uk/
books/banks/cultnote.htm.

[26] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner,
and David Brumley. BYTEWEIGHT: learning to recognize
functions in binary code. In Proc. of the USENIX Security
Symposium, 2014.

[27] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and
Lorenzo Cavallaro. Transcending transcend: Revisiting mal-
ware classification with conformal evaluation. In Proc. of the
IEEE Symposium on Security and Privacy (S&P), 2022.

[28] Earl T Barr, Mark Harman, Yue Jia, Alexandru Marginean,
and Justyna Petke. Automated software transplantation. In
Proc. of the ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). ACM, 2015.

rec.arts.sf.written
rec.arts.sf.written
http://www.vavatch.co.uk/books/banks/cultnote.htm
http://www.vavatch.co.uk/books/banks/cultnote.htm

162 machine learning for security in hostile environments

[29] Diogo Barradas, Nuno Santos, and Luís E. T. Rodrigues.
Effective detection of multimedia protocol tunneling using
machine learning. In Proc. of the USENIX Security Symposium,
2018.

[30] Peter L. Bartlett and Marten H. Wegkamp. Classification with
a reject option using a hinge loss. Journal of Machine Learning
Research (JMLR), 9, 2008.

[31] Richard Bellman. Adaptive Control Processes - A Guided Tour
(Reprint from 1961), volume 2045. Princeton University Press,
2015. ISBN 978-1-4008-7466-8. URL https://doi.org/10.

1515/9781400874668.

[32] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent.
Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 35(8):1798–1828, 2013.

[33] James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. Journal of Machine Learning
Research (JMLR), 13, 2012.

[34] Battista Biggio and Fabio Roli. Wild patterns: Ten years after
the rise of adversarial machine learning. Pattern Recognition,
2018.

[35] Battista Biggio, Blaine Nelson, and Pavel Laskov. Support
vector machines under adversarial label noise. In Proc. of
Asian Conference on Machine Learning (ACML), 2011.

[36] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poison-
ing attacks against support vector machines. In Proc. of the
International Conference on Machine Learning (ICML), 2012.

[37] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson,
Nedim Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio
Roli. Evasion attacks against machine learning at test time.
In Proc. of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD). Springer, 2013.

[38] Battista Biggio, Giorgio Fumera, and Fabio Roli. Security
evaluation of pattern classifiers under attack. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 2013.

[39] Christopher M Bishop. Pattern Recognition and Machine Learn-
ing. Springer, 2006.

[40] Christopher M. Bishop. Pattern recognition and machine learn-
ing, 5th Edition. Springer, 2007.

[41] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.

https://doi.org/10.1515/9781400874668
https://doi.org/10.1515/9781400874668

bibliography 163

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin
Zhang, Jake Zhao, and Karol Zieba. End to end learning
for self-driving cars. CoRR, abs/1604.07316, 2016.

[42] Yazan Boshmaf, Dionysios Logothetis, Georgos Siganos,
Jorge Lería, José Lorenzo, Matei Ripeanu, and Konstantin
Beznosov. Integro: Leveraging victim prediction for robust
fake account detection in osns. In Proc. of the Network and
Distributed System Security Symposium (NDSS). The Internet
Society, 2015.

[43] Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi,
and Justin Gilmer. Adversarial Patch. arXiv preprint
arXiv:1712.09665, 2017.

[44] Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard E.
Harang, Konrad Rieck, Rachel Greenstadt, and Arvind
Narayanan. When coding style survives compilation: De-
anonymizing programmers from executable binaries. In
Proc. of the Network and Distributed System Security Symposium
(NDSS), 2018.

[45] Davide Canali, Marco Cova, Giovanni Vigna, and Christopher
Kruegel. Prophiler: a fast filter for the large-scale detection of
malicious web pages. In Proc. of the International World Wide
Web Conference (WWW), 2011.

[46] Davide Canali, Andrea Lanzi, Davide Balzarotti, Christopher
Kruegel, Mihai Christodorescu, and Engin Kirda. A quanti-
tative study of accuracy in system call-based malware detec-
tion. In Proc. of the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), 2012.

[47] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago
Pregueiro. Aiding the detection of fake accounts in large
scale social online services. In Proc. on USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2012.

[48] Yulong Cao, Chaowei Xiao, Dawei Yang, Jing Fang, Ruigang
Yang, Mingyan Liu, and Bo Li. Adversarial Objects against
LiDAR-based Autonomous Driving Systems. arXiv preprint
arXiv:1907.05418, 2019.

[49] Nicholas Carlini and David Wagner. Audio adversarial exam-
ples: Targeted attacks on speech-to-text. In Proc. of the Deep
Learning and Security Workshop (DLS). IEEE, 2018.

[50] Nicholas Carlini and David A. Wagner. Adversarial examples
are not easily detected: Bypassing ten detection methods. In
Proc. of the ACM Workshop on Artificial Intelligence and Security
(AISec). ACM, 2017.

164 machine learning for security in hostile environments

[51] Nicholas Carlini and David A. Wagner. Towards evaluating
the robustness of neural networks. In Proc. of the IEEE Sym-
posium on Security and Privacy (S&P). IEEE Computer Society,
2017.

[52] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland
Brendel, Jonas Rauber, Dimitris Tsipras, Ian Goodfellow, and
Aleksander Madry. On evaluating adversarial robustness.
CoRR, abs/1902.06705, 2019.

[53] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew
Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts,
Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea,
and Colin Raffel. Extracting training data from large lan-
guage models. In Proc. of the USENIX Security Symposium,
2021.

[54] Curtis Carmony, Xunchao Hu, Heng Yin, Abhishek Vasisht
Bhaskar, and Mu Zhang. Extract me if you can: Abusing
PDF parsers in malware detectors. In Proc. of the Network and
Distributed System Security Symposium (NDSS), 2016.

[55] Tanmoy Chakraborty, Fabio Pierazzi, and V. S. Subrahmanian.
EC2: Ensemble Clustering and Classification for Predicting
Android Malware Families. IEEE Transactions on Dependable
and Secure Computing (TDSC), 2017.

[56] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and
W. Philip Kegelmeyer. SMOTE: synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research
(JAIR), 2002.

[57] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz.
Special issue on learning from imbalanced data sets. ACM
SIGKDD Explorations Newsletter, 2004.

[58] Yizheng Chen, Shiqi Wang, Dongdong She, and Suman Jana.
On training robust PDF malware classifiers. In Proc. of the
USENIX Security Symposium, 2020.

[59] Yizheng Chen, Shiqi Wang, Weifan Jiang, Asaf Cidon, and
Suman Jana. Cost-aware robust tree ensembles for security
applications. In Proc. of the USENIX Security Symposium, 2021.

[60] Bobby Chesney and Danielle Citron. Deep fakes: A loom-
ing challenge for privacy, democracy, and national security.
California Law Review, 107:1753, 2019.

[61] Davide Chicco and Giuseppe Jurman. The advantages of
the matthews correlation coefficient (mcc) over f1 score and
accuracy in binary classification evaluation. BMC Genomics,
2020.

bibliography 165

[62] Clarence Chio and David Freeman. Machine Learning and
Security: Protecting Systems with Data and Algorithms. O’Reilly
Media, Inc., 2018.

[63] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai
Liang. Neural nets can learn function type signatures from
binaries. In Proc. of the USENIX Security Symposium, 2017.

[64] Kenneth T. Co, Luis Muñoz-González, Sixte de Maupeou,
and Emil C. Lupu. Procedural noise adversarial examples for
black-box attacks on deep convolutional networks. In Proc. of
the ACM Conference on Computer and Communications Security
(CCS), 2019.

[65] Igino Corona, Giorgio Giacinto, and Fabio Roli. Adversar-
ial attacks against intrusion detection systems: Taxonomy,
solutions and open issues. Information Sciences, 2013.

[66] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine Learning, 20(3), 1995.

[67] Corinna Cortes, Mehryar Mohri, Michael Riley, and Afshin
Rostamizadeh. Sample selection bias correction theory. In
Proc. of the International Conference on Algorithmic Learning
Theory (ALT), 2008.

[68] Marco Cova, Christopher Krügel, and Giovanni Vigna. Detec-
tion and analysis of drive-by-download attacks and malicious
javascript code. In Proc. of the International World Wide Web
Conference (WWW). ACM, 2010.

[69] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. Online passive-aggressive algo-
rithms. Journal of Machine Learning Research (JMLR), 7:551–585,
2006.

[70] Charlie Curtsinger, Benjamin Livshits, Benjamin G. Zorn,
and Christian Seifert. ZOZZLE: fast and precise in-browser
javascript malware detection. In Proc. of the USENIX Security
Symposium. USENIX Association, 2011. URL http://static.

usenix.org/events/sec11/tech/full_papers/Curtsinger.

pdf.

[71] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-
scale malware classification using random projections and
neural networks. In Proc. of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). IEEE, 2013.

[72] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak
Verma, et al. Adversarial classification. In Proc. of the ACM
SIGKDD International Conference On Knowledge Discovery and
Data Mining (KDD). ACM, 2004.

http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf

166 machine learning for security in hostile environments

[73] Hung Dang, Yue Huang, and Ee-Chien Chang. Evading
classifiers by morphing in the dark. In Proc. of the ACM
Conference on Computer and Communications Security (CCS),
2017.

[74] Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin J.
Khan, Kimberly Tam, Mansour Ahmadi, Johannes Kinder,
and Lorenzo Cavallaro. Droidscribe: Classifying android mal-
ware based on runtime behavior. In Proc. of the IEEE Workshop
on Mobile Security Technologies (MoST). IEEE Computer Soci-
ety, 2016.

[75] Jesse Davis and Mark Goadrich. The relationship between
precision-recall and ROC curves. In Proc. of the International
Conference on Machine Learning (ICML). ACM, 2006.

[76] Emiliano De Cristofaro. An overview of privacy in machine
learning. arXiv:2005.08679, 2020.

[77] Ambra Demontis, Marco Melis, Battista Biggio, Davide
Maiorca, Daniel Arp, Konrad Rieck, Igino Corona, Giorgio
Giacinto, and Fabio Roli. Yes, machine learning can be more
secure! a case study on android malware detection. IEEE
Transactions on Dependable and Secure Computing (TDSC), 2017.

[78] Ambra Demontis, Marco Melis, Maura Pintor, Matthew
Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-Rotaru,
and Fabio Roli. Why do adversarial attacks transfer? explain-
ing transferability of evasion and poisoning attacks. In Proc.
of the USENIX Security Symposium, 2019.

[79] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In NAACL-HLT. Associ-
ation for Computational Linguistics, 2019.

[80] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Char-
land. Asm2vec: Boosting static representation robustness for
binary clone search against code obfuscation and compiler
optimization. In Proc. of the IEEE Symposium on Security and
Privacy (S&P), 2019.

[81] William F. Dowling and Jean H. Gallier. Linear-time al-
gorithms for testing the satisfiability of propositional horn
formulae. Journal of Logic Programming, 1(3), 1984.

[82] Jun Du and Charles X Ling. Active learning with human-like
noisy oracle. In Proc. of the IEEE International Conference on
Data Mining series (ICDM). IEEE, 2010.

[83] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
Deeplog: Anomaly detection and diagnosis from system
logs through deep learning. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), 2017.

bibliography 167

[84] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, I still see you: Why efficient
traffic analysis countermeasures fail. In IEEE Symposium on
Security and Privacy, pages 332–346. IEEE Computer Society,
2012.

[85] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou.
Hotflip: White-box adversarial examples for text classifi-
cation. In Proc. of the Annual Meeting of the Association for
Computational Linguistics (ACL), 2018.

[86] Sergey Edunov, Myle Ott, Michael Auli, and David Grang-
ier. Understanding back-translation at scale. In Proc. of the
Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 2018.

[87] William Enck, Machigar Ongtang, and Patrick D. McDaniel.
On lightweight mobile phone application certification. In
Proc. of the ACM Conference on Computer and Communications
Security (CCS), 2009.

[88] Sebastian Eresheim, Robert Luh, and Sebastian Schrittwieser.
The evolution of process hiding techniques in malware-
current threats and possible countermeasures. Journal of
Information Processing, 2017.

[89] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li,
Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi
Kohno, and Dawn Song. Robust Physical-World Attacks
on Deep Learning Visual Classification. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[90] Ming Fan, Xiapu Luo, Jun Liu, Meng Wang, Chunyin Nong,
Qinghua Zheng, and Ting Liu. Graph embedding based
familial analysis of android malware using unsupervised
learning. In Proc. of the International Conference on Software
Engineering (ICSE), 2019.

[91] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. LIBLINEAR: A library for large
linear classification. Journal of Machine Learning Research
(JMLR), 9:1871–1874, 2008.

[92] Aurore Fass, Michael Backes, and Ben Stock. HideNoSeek:
Camouflaging Malicious JavaScript in Benign ASTs. In Proc. of
the ACM Conference on Computer and Communications Security
(CCS), 2019.

[93] Tom Fawcett. In vivo spam filtering: A challenge problem for
kdd. ACM SIGKDD Explorations Newsletter, 2003.

168 machine learning for security in hostile environments

[94] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan.
Testing the manifold hypothesis. Journal of the American
Mathematical Society, 29(4):983–1049, 2016.

[95] Steven Feldstein. The global expansion of ai surveillance.
Technical report, Carnegie Endowment for International
Peace, 2019.

[96] Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Tobias Springenberg, Manuel Blum, and Frank Hutter.
Efficient and robust automated machine learning. In Advances
in Neural Information Processing Systems (NeurIPS), 2015.

[97] Felix Fischer, Konstantin Böttinger, Huang Xiao, Chris-
tian Stransky, Yasemin Acar, Michael Backes, and Sascha
Fahl. Stack overflow considered harmful? the impact of
copy&paste on android application security. In Proc. of the
IEEE Symposium on Security and Privacy (S&P), 2017.

[98] Felix Fischer, Huang Xiao, Ching-yu Kao, Yannick
Stachelscheid, Benjamin Johnson, Danial Razar, Paul
Fawkesley, Nat Buckley, Konstantin Böttinger, Paul Muntean,
and Jens Grossklags. Stack overflow considered helpful! deep
learning security nudges towards stronger cryptography. In
Proc. of the USENIX Security Symposium, 2019.

[99] Ronald A Fisher. The use of multiple measurements in taxo-
nomic problems. Annals of eugenics, 7(2):179–188, 1936.

[100] Prahlad Fogla, Monirul I. Sharif, Roberto Perdisci, Oleg M.
Kolesnikov, and Wenke Lee. Polymorphic blending attacks.
In Proc. of the USENIX Security Symposium, 2006.

[101] George Forman. A pitfall and solution in multi-class feature
selection for text classification. In Proc. of the International
Conference on Machine Learning (ICML), 2004.

[102] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and
basic countermeasures. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), 2015.

[103] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon M. Lin,
David Page, and Thomas Ristenpart. Privacy in pharmaco-
genetics: An end-to-end case study of personalized warfarin
dosing. In Proc. of the USENIX Security Symposium, 2014.

[104] B. Frenay and M. Verleysen. Classification in the presence of
label noise: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 2014.

[105] Robert M. French and Nick Chater. Using noise to compute
error surfaces in connectionist networks: A novel means of
reducing catastrophic forgetting. Neural Computation, 14(7),
2002. URL https://doi.org/10.1162/08997660260028700.

https://doi.org/10.1162/08997660260028700

bibliography 169

[106] Jerome H Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics, 2001.

[107] Giorgio Fumera, Ignazio Pillai, and Fabio Roli. Classification
with reject option in text categorisation systems. In Int. Conf.
Image Analysis and Processing. IEEE, 2003.

[108] João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy,
and Abdelhamid Bouchachia. A survey on concept drift
adaptation. ACM Comput. Surv., 46(4):44:1–44:37, 2014.

[109] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. Structural detection of android malware using em-
bedded call graphs. In Proc. of the ACM Workshop on Artificial
Intelligence and Security (AISec). ACM, 2013.

[110] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin D.
Cubuk. Adversarial examples are a natural consequence of
test error in noise. In Proc. of the International Conference on
Machine Learning (ICML), 2019.

[111] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua
Bengio. Deep learning. MIT press Cambridge, 2016.

[112] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In ICLR
(Poster), 2015.

[113] Google. Permissions on Android. https://developer.

android.com/guide/topics/security/permissions.html,
2016.

[114] Google. Android Security 2016 Year in Review, Tech. Report,
2017.

[115] Google. https://www.virustotal.com/, 2019.

[116] Google. Google play protect: 2.5 billion active devices. https:
//www.android.com/intl/en_us/intl/en_uk/play-protect/,
2020. Accessed: Sep 2020.

[117] Will Grimond and Asheem Singh. A force for good? results
from foi requests on artificial intelligence in the police force.
Technical report, Royal Society for the encouragement of
Arts, Manufactures and Commerce, 2020.

[118] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. Adversarial perturba-
tions against deep neural networks for malware classification.
arXiv preprint arXiv:1606.04435, 2016.

[119] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. Adversarial exam-
ples for malware detection. In Proc. of the European Symposium
on Research in Computer Security (ESORICS). Springer, 2017.

https://developer.android.com/guide/topics/security/permissions.html
https://developer.android.com/guide/topics/security/permissions.html
https://www.virustotal.com/
https://www.android.com/intl/en_us/intl/en_uk/play-protect/
https://www.android.com/intl/en_us/intl/en_uk/play-protect/

170 machine learning for security in hostile environments

[120] Shixiang Gu and Luca Rigazio. Towards deep neural net-
work architectures robust to adversarial examples. In ICLR
(Workshop), 2015.

[121] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv:1708.06733, 2017.

[122] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang,
and Xinyu Xing. LEMNA: explaining deep learning based se-
curity applications. In Proc. of the ACM Conference on Computer
and Communications Security (CCS). ACM, 2018.

[123] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-
smote: A new over-sampling method in imbalanced data sets
learning. In Advances in Intelligent Computing, 2005.

[124] David J Hand. Measuring classifier performance: a coher-
ent alternative to the area under the ROC curve. Machine
Learning, 2009.

[125] Karen Hao. How facebook uses machine
learning to detect fake accounts. https:

//www.technologyreview.com/2020/03/04/905551/

how-facebook-uses-machine-learning-to-detect-fake-accounts,
2019. Accessed: Sep 2021.

[126] Haibo He and Edwardo A Garcia. Learning from imbalanced
data. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 2009.

[127] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[128] Mario Heiderich, Tilman Frosch, and Thorsten Holz.
Iceshield: Detection and mitigation of malicious websites
with a frozen DOM. In Proc. of the Symposium on Research in
Attacks, Intrusions, and Defenses (RAID). Springer, 2011.

[129] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing
the dimensionality of data with neural networks. science, 313

(5786):504–507, 2006.

[130] Harold Hotelling. Analysis of a complex of statistical vari-
ables into principal components. Journal of educational psychol-
ogy, 24(6):417, 1933.

[131] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP
Rubinstein, and JD Tygar. Adversarial machine learning. In
Proc. of the ACM Workshop on Artificial Intelligence and Security
(AISec). ACM, 2011.

https://www.technologyreview.com/2020/03/04/905551/how-facebook-uses-machine-learning-to-detect-fake-accounts
https://www.technologyreview.com/2020/03/04/905551/how-facebook-uses-machine-learning-to-detect-fake-accounts
https://www.technologyreview.com/2020/03/04/905551/how-facebook-uses-machine-learning-to-detect-fake-accounts

bibliography 171

[132] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan
Engstrom, Brandon Tran, and Aleksander Madry. Adversarial
examples are not bugs, they are features. In Advances in
Neural Information Processing Systems (NeurIPS), pages 125–
136, 2019.

[133] Inigo Incer, Michael Theodorides, Sadia Afroz, and David
Wagner. Adversarially robust malware detection using mono-
tonic classification. In Proc. of the ACM International Workshop
on Security And Privacy Analytics (IWSPA). ACM, 2018.

[134] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fin-
gerprinting the fingerprinters: Learning to detect browser
fingerprinting behaviors. CoRR, abs/2008.04480, 2020.

[135] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits,
Zhiyun Qian, and Zubair Shafiq. Adgraph: A graph-based
approach to ad and tracker blocking. In Proc. of the IEEE
Symposium on Security and Privacy (S&P). IEEE, 2020.

[136] Aylin Caliskan Islam, Richard E. Harang, Andrew Liu,
Arvind Narayanan, Clare R. Voss, Fabian Yamaguchi, and
Rachel Greenstadt. De-anonymizing programmers via code
stylometry. In Proc. of the USENIX Security Symposium, 2015.

[137] Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando
Solar-Lezama. Jsketch: sketching for java. In Proc. of the ACM
SIGSOFT Conference on Foundations of Software Engineering
(FSE). ACM, 2015.

[138] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An
efficient neural architecture search system. In Proc. of the
ACM SIGKDD International Conference On Knowledge Discovery
and Data Mining (KDD), 2019.

[139] Roberto Jordaney, Kumar Sharad, Santanu Kumar Dash, Zhi
Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo Caval-
laro. Transcend: Detecting concept drift in malware classi-
fication models. In Proc. of the USENIX Security Symposium,
2017.

[140] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and
Rachel Greenstadt. A critical evaluation of website finger-
printing attacks. In Proc. of the ACM Conference on Computer
and Communications Security (CCS), 2014.

[141] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Au-
rélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A.
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El
Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco
Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan

172 machine learning for security in hostile environments

Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi,
Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra
Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Le-
point, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard
Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage,
Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang
Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang,
Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and
Sen Zhao. Advances and open problems in federated learn-
ing. Found. Trends Mach. Learn., 14(1-2):1–210, 2021.

[142] Anil Kamath, Rajeev Motwani, Krishna V. Palem, and Paul G.
Spirakis. Tail bounds for occupancy and the satisfiability
threshold conjecture. In Proc. of the IEEE Symposium on Foun-
dations of Computer Science (FOCS). IEEE Computer Society,
1994.

[143] Zeliang Kan, Feargus Pendlebury, Fabio Pierazzi, and
Lorenzo Cavallaro. Investigating labelless drift adaptation
for malware detection. In Proc. of the ACM Workshop on Artifi-
cial Intelligence and Security (AISec), 2021.

[144] Alex Kantchelian, Sadia Afroz, Ling Huang, Aylin Caliskan
Islam, Brad Miller, Michael Carl Tschantz, Rachel Greenstadt,
Anthony D. Joseph, and J. D. Tygar. Approaches to adversar-
ial drift. In AISec, pages 99–110. ACM, 2013.

[145] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad
Miller, Vaishaal Shankar, Rekha Bachwani, Anthony D.
Joseph, and J. Doug Tygar. Better malware ground truth:
Techniques for weighting anti-virus vendor labels. In Proc. of
the ACM Workshop on Artificial Intelligence and Security (AISec).
ACM, 2015.

[146] Kaspersky Lab. Adwind malware-as-a-service hits more than
400,000 users globally. https://www.kaspersky.co.uk/blog/

adwind-rat/6731/, 2021. (last visited Jan. 22, 2021).

[147] Auguste Kerckhoffs. La cryptographie militaire. In Journal des
sciences militaires, 1883.

[148] Amin Kharraz, Sajjad Arshad, Collin Mulliner, William K.
Robertson, and Engin Kirda. UNVEIL: A large-scale, au-
tomated approach to detecting ransomware. In Proc. of the
USENIX Security Symposium, 2016.

[149] Amin Kharraz, William K. Robertson, and Engin Kirda. Sur-
veylance: Automatically detecting online survey scams. In
Proc. of the IEEE Symposium on Security and Privacy (S&P),
2018.

[150] Marc Khoury and Dylan Hadfield-Menell. On the geometry
of adversarial examples. CoRR, abs/1811.00525, 2018.

https://www.kaspersky.co.uk/blog/adwind-rat/6731/
https://www.kaspersky.co.uk/blog/adwind-rat/6731/

bibliography 173

[151] Joohee Kim, Minji Kim, Mi-Sun Lee, Kukjoo Kim, Sangyoon
Ji, Yun-Tae Kim, Jihun Park, Kyungmin Na, Kwi-Hyun Bae,
Hong Kyun Kim, Franklin Bien, Chang Young Lee, and Jang-
Ung Park. Wearable smart sensor systems integrated on
soft contact lenses for wireless ocular diagnostics. Nature
Communications, 8(1), Apr 2017.

[152] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR (Poster), 2015.

[153] Clemens Kolbitsch, Benjamin Livshits, Benjamin G. Zorn,
and Christian Seifert. Rozzle: De-cloaking internet malware.
In Proc. of the IEEE Symposium on Security and Privacy (S&P),
2012.

[154] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide
Maiorca, Giorgio Giacinto, Claudia Eckert, and Fabio Roli.
Adversarial malware binaries: Evading deep learning for
malware detection in executables. In Proc. of the IEEE Euro-
pean Signal Processing Conference (EUSIPCO). IEEE, 2018.

[155] Klaus Krippendorff. Content analysis: An introduction to its
methodology. Sage publications, 2018.

[156] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Ima-
genet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems (NeurIPS),
2012.

[157] S. Kullback and R. A. Leibler. On information and sufficiency.
Annals of Mathematical Statistics, 1951.

[158] Bogdan Kulynych, Jamie Hayes, Nikita Samarin, and Carmela
Troncoso. Evading classifiers in discrete domains with prov-
able optimality guarantees. CoRR, abs/1810.10939, 2018.

[159] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Ad-
versarial machine learning at scale. CoRR, abs/1611.01236,
2016.

[160] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Ad-
versarial examples in the physical world. In ICLR (Workshop),
2017.

[161] Raphael Labaca-Castro, Luis Muñoz-González, Feargus
Pendlebury, Gabi Dreo Rodosek, Fabio Pierazzi, and Lorenzo
Cavallaro. Universal adversarial perturbations for malware.
arXiv preprint arXiv:2102.06747, 2021.

[162] Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder,
Grégoire Montavon, Wojciech Samek, and Klaus-Robert
Müller. Unmasking Clever Hans predictors and assessing
what machines really learn. Nature Communications, 10(1),
2019.

174 machine learning for security in hostile environments

[163] Tracy Larrabee. Test pattern generation using boolean sat-
isfiability. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 11(1), 1992.

[164] Pavel Laskov and Nedim Šrndić. Static Detection of Ma-
licious JavaScript-Bearing PDF Documents. In Proc. of the
Annual Computer Security Applications Conference (ACSAC).
ACM, 2011.

[165] Lastline, Inc. Malware-as-a-service: The 9-to-5 of or-
ganized cybercrime. https://www.lastline.com/blog/

malware-as-a-service-the-9-to-5-of-organized-cybercrime/,
2021. (last visited Jan. 22, 2021).

[166] Eunjo Lee, Jiyoung Woo, Hyoungshick Kim, Aziz Mohaisen,
and Huy Kang Kim. You are a game bot!: Uncovering game
bots in mmorpgs via self-similarity in the wild. In Proc. of the
Network and Distributed System Security Symposium (NDSS).
The Internet Society, 2016.

[167] Sangho Lee and Jong Kim. Warningbird: Detecting sus-
picious urls in twitter stream. In Proc. of the Network and
Distributed System Security Symposium (NDSS). The Internet
Society, 2012.

[168] Mourad Leslous, Valérie Viet Triem Tong, Jean-François La-
lande, and Thomas Genet. Gpfinder: tracking the invisible
in android malware. In Proc. of the International Conference on
Malicious and Unwanted Software (MALWARE). IEEE, 1999.

[169] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang.
Textbugger: Generating adversarial text against real-world
applications. Proc. of the Network and Distributed System Secu-
rity Symposium (NDSS), 2019.

[170] Li Li, Tegawendé Bissyandé, and Jacques Klein. Moonlight-
Box: Mining android api histories for uncovering release-time
inconsistencies. In Proc. of the IEEE International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2018.

[171] Linyi Li, Xiangyu Qi, Tao Xie, and Bo Li. Sok: Certified
robustness for deep neural networks. CoRR, abs/2009.04131,
2020.

[172] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Su-
juan Wang, Zhijun Deng, and Yuyi Zhong. Vuldeepecker: A
deep learning-based system for vulnerability detection. In
Proc. of the Network and Distributed System Security Symposium
(NDSS), 2018.

[173] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto,
Matthias Neugschwandtner, Elias Athanasopoulos, Fed-
erico Maggi, Christian Platzer, Stefano Zanero, and Sotiris

https://www.lastline.com/blog/malware-as-a-service-the-9-to-5-of-organized-cybercrime/
https://www.lastline.com/blog/malware-as-a-service-the-9-to-5-of-organized-cybercrime/

bibliography 175

Ioannidis. AndRadar: Fast discovery of android applications
in alternative markets. In Proc. of the Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA).
Springer, 2014.

[174] Martina Lindorfer, Matthias Neugschwandtner, and Christian
Platzer. MARVIN: efficient and comprehensive mobile app
classification through static and dynamic analysis. In Proc. of
the IEEE Annual Computer Software and Applications Conference
(COMPSAC). IEEE Computer Society, 2015.

[175] Henrik Linusson, Ulf Johansson, Henrik Boström, and Tuve
Löfström. Classification with reject option using conformal
prediction. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD). Springer, 2018.

[176] Zachary C. Lipton, Yu-Xiang Wang, and Alexander J. Smola.
Detecting and correcting for label shift with black box predic-
tors. In Proc. of the International Conference on Machine Learning
(ICML), 2018.

[177] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li, and
Yiran Chen. Dpatch: An Adversarial Patch Attack on Object
Detectors. arXiv preprint arXiv:1806.02299, 2018.

[178] Daniel Lowd and Christopher Meek. Good word attacks on
statistical spam filters. In Proc. of the Conference on Email and
Anti-Spam (CEAS), volume 2005, 2005.

[179] Zhaoyang Lyu, Minghao Guo, Tong Wu, Guodong Xu, Ke-
huan Zhang, and Dahua Lin. Towards evaluating and train-
ing verifiably robust neural networks. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[180] Xin Ma, Samad Ahadian, Song Liu, Jingwen Zhang, Sheng-
nan Liu, Teng Cao, Wenbin Lin, Dong Wu, Natan Roberto
de Barros, Mohammad Reza Zare, Sibel Emir Diltemiz,
Vadim Jucaud, Yangzhi Zhu, Shiming Zhang, Ethan Banton,
Yue Gu, Kewang Nan, Sheng Xu, Mehmet Remzi Dokmeci,
and Ali Khademhosseini. Smart contact lenses for biosensing
applications. Advanced Intelligent Systems, 3(5), 2021.

[181] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

[182] Federico Maggi, William Robertson, Christopher Kruegel,
and Giovanni Vigna. Protecting a moving target: Addressing
web application concept drift. In Proc. of the International
Symposium on Recent Advances in Intrusion Detection (RAID),
2009.

176 machine learning for security in hostile environments

[183] Federico Maggi, Alessandro Frossi, Stefano Zanero, Gian-
luca Stringhini, Brett Stone-Gross, Christopher Kruegel, and
Giovanni Vigna. Two years of short urls internet measure-
ment: Security threats and countermeasures. In Proc. of the
International World Wide Web Conference (WWW). ACM, 2013.

[184] Davide Maiorca, Giorgio Giacinto, and Igino Corona. A
pattern recognition system for malicious pdf files detection.
In Proc. of the International Conference on Machine Learning and
Data Mining in Pattern Recognition (MLDM). Springer, 2012.

[185] Davide Maiorca, Igino Corona, and Giorgio Giacinto. Look-
ing at the bag is not enough to find the bomb: an evasion
of structural methods for malicious pdf files detection. In
Proc. of the ACM Asia Conference on Computer Computer and
Communications Security (ASIA CCS). ACM, 2013.

[186] Davide Maiorca, Battista Biggio, and Giorgio Giacinto. To-
wards robust detection of adversarial infection vectors:
Lessons learned in pdf malware. CoRR, abs/1811.00830,
2019.

[187] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andrio-
tis, Emiliano De Cristofaro, Gordon J. Ross, and Gianluca
Stringhini. MaMaDroid: Detecting android malware by
building markov chains of behavioral models. In Proc. of the
Network and Distributed System Security Symposium (NDSS).
The Internet Society, 2017.

[188] Zane Markel and Michael Bilzor. Building a machine learning
classifier for malware detection. In Anti-malware Testing
Research Workshop. IEEE, 2014.

[189] Paul Mason. PostCapitalism: A guide to our future. Allen Lane,
2015.

[190] John McHugh. Testing intrusion detection systems: A critique
of the 1998 and 1999 darpa intrusion detection system evalua-
tions as performed by lincoln laboratory. ACM Transactions on
Information and System Security (TISSEC), 2000.

[191] Marco Melis, Davide Maiorca, Battista Biggio, Giorgio Giac-
into, and Fabio Roli. Explaining Black-box Android Malware
Detection. Proc. of the IEEE European Signal Processing Confer-
ence (EUSIPCO), 2018.

[192] Microsoft. New machine learning model sifts through the
good to unearth the bad in evasive malware. https://bit.

ly/3cbOXiF, 2019. Accessed: Sep 2020.

[193] Brad Miller, Alex Kantchelian, Sadia Afroz, Rekha Bach-
wani, Edwin Dauber, Ling Huang, Michael Carl Tschantz,
Anthony D. Joseph, and J. Doug Tygar. Adversarial active

https://bit.ly/3cbOXiF
https://bit.ly/3cbOXiF

bibliography 177

learning. In Proc. of the ACM Workshop on Artificial Intelligence
and Security (AISec), 2014.

[194] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia
Afroz, Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang,
Vaishaal Shankar, Tony Wu, George Yiu, et al. Reviewer
integration and performance measurement for malware de-
tection. In Proc. of the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA). Springer, 2016.

[195] Bradley Austin Miller. Scalable Platform for Malicious Content
Detection Integrating Machine Learning and Manual Review.
University of California, Berkeley, 2015.

[196] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf
Shabtai. Kitsune: An ensemble of autoencoders for online
network intrusion detection. In Proc. of the Network and Dis-
tributed System Security Symposium (NDSS), 2018.

[197] David Mitchell, Bart Selman, and Hector Levesque. Hard
and easy distributions of sat problems. In Proc. of the AAAI
Conference on Artificial Intelligence (AAAI). AAAI Press, 1992.
ISBN 0-262-51063-4. URL http://dl.acm.org/citation.cfm?

id=1867135.1867206.

[198] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar
Fawzi, and Pascal Frossard. Universal adversarial perturba-
tions. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[199] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaíz-Rodríguez,
Nitesh V. Chawla, and Francisco Herrera. A unifying view on
dataset shift in classification. Pattern Recognition, 45(1), 2012.

[200] Stylianos Moschoglou, Athanasios Papaioannou, Chris-
tos Sagonas, Jiankang Deng, Irene Kotsia, and Stefanos
Zafeiriou. Agedb: The first manually collected, in-the-wild
age database. In CVPR Workshops, pages 1997–2005. IEEE
Computer Society, 2017.

[201] Stylianos Moschoglou, Athanasios Papaioannou, Chris-
tos Sagonas, Jiankang Deng, Irene Kotsia, and Stefanos
Zafeiriou. Agedb: The first manually collected, in-the-wild
age database. In CVPR Workshops, pages 1997–2005. IEEE
Computer Society, 2017.

[202] Andreas Moser, Christopher Kruegel, and Engin Kirda. Lim-
its of static analysis for malware detection. In Proc. of the
Annual Computer Security Applications Conference (ACSAC),
2007.

[203] Annamalai Narayanan, Yang Liu, Lihui Chen, and Jinliang
Liu. Adaptive and scalable android malware detection

http://dl.acm.org/citation.cfm?id=1867135.1867206
http://dl.acm.org/citation.cfm?id=1867135.1867206

178 machine learning for security in hostile environments

through online learning. In Proc. of the International Joint
Conference on Neural Network (IJCNN). IEEE, 2016.

[204] Annamalai Narayanan, Mahinthan Chandramohan, Lihui
Chen, and Yang Liu. Context-aware, adaptive, and scalable
android malware detection through online learning. IEEE
Transactions on Emerging Topics in Computational Intelligence
(TETCI), 1(3), 2017.

[205] Milad Nasr, Alireza Bahramali, and Amir Houmansadr.
Deepcorr: Strong flow correlation attacks on tor using deep
learning. In Proc. of the ACM Conference on Computer and
Communications Security (CCS). ACM, 2018.

[206] Shirin Nilizadeh, Francois Labreche, Alireza Sedighian, Ali
Zand, José M. Fernandez, Christopher Kruegel, Gianluca
Stringhini, and Giovanni Vigna. POISED: spotting twitter
spam off the beaten paths. In Proc. of the ACM Conference on
Computer and Communications Security (CCS). ACM, 2017.

[207] Bruno A Olshausen and David J Field. Emergence of simple-
cell receptive field properties by learning a sparse code for
natural images. Nature, 381(6583):607–609, 1996.

[208] Timon Van Overveldt, Christopher Kruegel, and Giovanni
Vigna. Flashdetect: Actionscript 3 malware detection. In Proc.
of the Symposium on Research in Attacks, Intrusions, and Defenses
(RAID). Springer, 2012.

[209] Mark Palatucci, Dean Pomerleau, Geoffrey Hinton, and
Tom M. Mitchell. Zero-shot learning with semantic out-
put codes. In Advances in Neural Information Processing Systems
(NeurIPS), 2009.

[210] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas
Engel, Andreas Zinnen, Martin Henze, and Klaus Wehrle.
Website fingerprinting at internet scale. In Proc. of the Network
and Distributed System Security Symposium (NDSS), 2016.

[211] Harris Papadopoulos. Inductive conformal prediction: The-
ory and application to neural networks. In Paula Fritzsche,
editor, Tools in Artificial Intelligence, chapter 18. IntechOpen,
2008. URL https://doi.org/10.5772/6078.

[212] Nicolas Papernot and Patrick D. McDaniel. Deep k-nearest
neighbors: Towards confident, interpretable and robust deep
learning. CoRR, abs/1803.04765, 2018. URL http://arxiv.

org/abs/1803.04765.

[213] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In Proc.
of the IEEE European Symposium on Security and Privacy (Eu-
roS&P). IEEE, 2016.

https://doi.org/10.5772/6078
http://arxiv.org/abs/1803.04765
http://arxiv.org/abs/1803.04765

bibliography 179

[214] Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfel-
low. Transferability in machine learning: from phenom-
ena to black-box attacks using adversarial samples. CoRR,
abs/1605.07277, 2016.

[215] Nicolas Papernot, Patrick D. McDaniel, Xi Wu, Somesh Jha,
and Ananthram Swami. Distillation as a defense to adversar-
ial perturbations against deep neural networks. In Proc. of the
IEEE Symposium on Security and Privacy (S&P), pages 582–597,
2016.

[216] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow,
Somesh Jha, Z. Berkay Celik, and Ananthram Swami. Practi-
cal black-box attacks against machine learning. In Proc. of the
ACM Asia Conference on Computer Computer and Communica-
tions Security (ASIA CCS), pages 506–519, 2017.

[217] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and
Michael P. Wellman. SoK: Security and privacy in machine
learning. In Proc. of the IEEE European Symposium on Security
and Privacy (EuroS&P), April 2018.

[218] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NeurIPS Autodiff Workshop, 2017.

[219] Vern Paxson. Bro: A system for detecting network intruders
in real-time. In Proc. of the USENIX Security Symposium, 1998.

[220] Karl Pearson. Liii. on lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin philo-
sophical magazine and journal of science, 2(11):559–572, 1901.

[221] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research
(JMLR), 12, 2011.

[222] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Jo-
hannes Kinder, and Lorenzo Cavallaro. Poster: Enabling fair
ml evaluations for security. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), 2018.

[223] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Jo-
hannes Kinder, and Lorenzo Cavallaro. TESSERACT: elim-
inating experimental bias in malware classification across
space and time. In Proc. of the USENIX Security Symposium,
2019.

[224] Jeffrey Pennington, Richard Socher, and Christopher D. Man-
ning. Glove: Global vectors for word representation. In

180 machine learning for security in hostile environments

Proc. of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2014.

[225] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral
clustering of http-based malware and signature generation
using malicious network traces. In Proc. on USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI),
2010.

[226] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and
Lorenzo Cavallaro. Intriguing properties of adversarial ml
attacks in the problem space. In Proc. of the IEEE Symposium
on Security and Privacy (S&P), 2020.

[227] Benjamin C Pierce and C Benjamin. Types and programming
languages. MIT press, 2002.

[228] Lukas Pirch, Alexander Warnecke, Christian Wressnegger,
and Konrad Rieck. Tagvet: Vetting malware tags using ex-
plainable machine learning. In EuroSec@EuroSys, pages 34–40.
ACM, 2021.

[229] Plato. The Symposium. Penguin, c. 385–370 BC. Penguin
Classics edition published 1999, translated by Christopher
Gill.

[230] Joaquin Quionero-Candela, Masashi Sugiyama, Anton
Schwaighofer, and Neil D. Lawrence. Dataset Shift in Machine
Learning. The MIT Press, 2009. ISBN 0262170051.

[231] Erwin Quiring, Alwin Maier, and Konrad Rieck. Mislead-
ing authorship attribution of source code using adversarial
learning. Proc. of the USENIX Security Symposium, 2019.

[232] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon,
Bryan Catanzaro, and Charles K Nicholas. Malware detection
by eating a whole exe. In AAAI Workshops, 2018.

[233] Edward Raff, Richard Zak, Gary Lopez Munoz, William
Fleming, Hyrum S. Anderson, Bobby Filar, Charles Nicholas,
and James Holt. Automatic yara rule generation using biclus-
tering. Proc. of the ACM Workshop on Artificial Intelligence and
Security (AISec), 2020.

[234] Babak Rahbarinia, Marco Balduzzi, and Roberto Perdisci.
Exploring the long tail of (malicious) software downloads.
In Proc. of the Conference on Dependable Systems and Networks
(DSN). IEEE, 2017.

[235] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
Why should i trust you?: Explaining the predictions of any
classifier. In Proc. of the ACM SIGKDD International Conference
On Knowledge Discovery and Data Mining (KDD). ACM, 2016.

bibliography 181

[236] Konrad Rieck, Tammo Krueger, and Andreas Dewald. Cujo:
Efficient detection and prevention of drive-by-download
attacks. In Proc. of the Annual Computer Security Applications
Conference (ACSAC). ACM, 2010.

[237] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot,
and Yoshua Bengio. Contractive auto-encoders: Explicit
invariance during feature extraction. In Icml, 2011.

[238] Vera Rimmer, Davy Preuveneers, Marc Juárez, Tom van
Goethem, and Wouter Joosen. Automated website finger-
printing through deep learning. In Proc. of the Network and
Distributed System Security Symposium (NDSS), 2018.

[239] Martin Roesch. Snort - lightweight intrusion detection for
networks. In In Proc. of the 13th USENIX Conference on System
Administration, 1999.

[240] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval
Elovici. Generic black-box end-to-end attack against state of
the art API call based malware classifiers. In Proc. of the Sym-
posium on Research in Attacks, Intrusions, and Defenses (RAID).
Springer, 2018.

[241] Christian Rossow, Christian J Dietrich, Chris Grier, Christian
Kreibich, Vern Paxson, Norbert Pohlmann, Herbert Bos, and
Maarten Van Steen. Prudent practices for designing malware
experiments: Status quo and outlook. In Proc. of the IEEE
Symposium on Security and Privacy (S&P). IEEE, 2012.

[242] Sankardas Roy, Jordan DeLoach, Yuping Li, Nic Herndon,
Doina Caragea, Xinming Ou, Venkatesh Prasad Ranganath,
Hongmin Li, and Nicolais Guevara. Experimental study
with real-world data for android app security analysis using
machine learning. In Proc. of the Annual Computer Security
Applications Conference (ACSAC). ACM, 2015.

[243] Ahmed Salem, Michael Backes, and Yang Zhang. Don’t
trigger me! A triggerless backdoor attack against deep neural
networks. CoRR, abs/2010.03282, 2020.

[244] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and
Yang Zhang. Dynamic backdoor attacks against machine
learning models. CoRR, abs/2003.03675, 2020.

[245] Igor Santos, Felix Brezo, Javier Nieves, Yoseba K. Penya,
Borja Sanz, Carlos Laorden, and Pablo García Bringas. Idea:
Opcode-sequence-based malware detection. In Proc. of the
International Symposium on Engineering Secure Software and
Systems (ESSoS), 2010.

[246] Aubrey-Derrick Schmidt, Rainer Bye, Hans-Gunther Schmidt,
Jan Hendrik Clausen, Osman Kiraz, Kamer Ali Yüksel,

182 machine learning for security in hostile environments

Seyit Ahmet Çamtepe, and Sahin Albayrak. Static analysis of
executables for collaborative malware detection on android.
In Proc. of the IEEE International Conference on Communications
(ICC). IEEE, 2009.

[247] Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin
Sitawarin, Daniel Cullina, Mung Chiang, and Prateek Mit-
tal. Better the devil you know: An analysis of evasion at-
tacks using out-of-distribution adversarial examples. CoRR,
abs/1905.01726, 2019.

[248] Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin
Sitawarin, Daniel Cullina, Mung Chiang, and Prateek Mittal.
Analyzing the robustness of open-world machine learning. In
Proc. of the ACM Workshop on Artificial Intelligence and Security
(AISec). ACM, 2019.

[249] Bart Selman, David G. Mitchell, and Hector J. Levesque.
Generating hard satisfiability problems. Artificial Intelligence,
81(1-2), 1996. doi: 10.1016/0004-3702(95)00045-3. URL
https://doi.org/10.1016/0004-3702(95)00045-3.

[250] Burr Settles. Active learning literature survey. Synthesis
Lectures on Artificial Intelligence and Machine Learning, 2012.

[251] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea.
Explanation-guided backdoor poisoning attacks against mal-
ware classifiers. In Proc. of the USENIX Security Symposium,
2021.

[252] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Su-
ciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein.
Poison frogs! targeted clean-label poisoning attacks on neural
networks. In Advances in Neural Information Processing Systems
(NeurIPS), pages 6106–6116, 2018.

[253] Glenn Shafer and Vladimir Vovk. A tutorial on conformal
prediction. Journal of Machine Learning Research (JMLR), 9,
2008.

[254] M. Zubair Shafiq, S. Momina Tabish, Fauzan Mirza, and
Muddassar Farooq. Pe-miner: Mining structural information
to detect malicious executables in realtime. In Proc. of the
Symposium on Research in Attacks, Intrusions, and Defenses
(RAID), 2009.

[255] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and
Michael K Reiter. Accessorize to a crime: Real and stealthy
attacks on state-of-the-art face recognition. In Proc. of the
ACM Conference on Computer and Communications Security
(CCS). ACM, 2016.

[256] Yun Shen, Enrico Mariconti, Pierre-Antoine Vervier, and
Gianluca Stringhini. Tiresias: Predicting security events

https://doi.org/10.1016/0004-3702(95)00045-3

bibliography 183

through deep learning. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), 2018.

[257] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.
Recognizing functions in binaries with neural networks. In
Proc. of the USENIX Security Symposium, 2015.

[258] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. In Proc. of the IEEE Symposium on Security
and Privacy (S&P), 2017.

[259] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan. Un-
earthing stealthy program attacks buried in extremely long
execution paths. In Proc. of the ACM Conference on Computer
and Communications Security (CCS), 2015.

[260] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef
Meltser, Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust
website fingerprinting through the cache occupancy channel.
In Proc. of the USENIX Security Symposium, 2019.

[261] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. In Proc. of
the International Conference on Learning Representations (ICLR),
2015.

[262] Payap Sirinam, Mohsen Imani, Marc Juárez, and Matthew
Wright. Deep fingerprinting: Undermining website finger-
printing defenses with deep learning. In Proc. of the ACM
Conference on Computer and Communications Security (CCS),
2018.

[263] Michael R. Smith, Nicholas T. Johnson, Joe B. Ingram,
Armida J. Carbajal, Ramyaa Ramyaa, Evelyn Domschot,
Christopher C. Lamb, Stephen J. Verzi, and W. Philip
Kegelmeyer. Mind the gap: On bridging the semantic gap
between machine learning and information security. CoRR,
abs/2005.01800, 2020.

[264] Charles Smutz and Angelos Stavrou. Malicious pdf detection
using metadata and structural features. In Proc. of the Annual
Computer Security Applications Conference (ACSAC). ACM,
2012.

[265] Charles Smutz and Angelos Stavrou. Malicious PDF detection
using metadata and structural features. In Proc. of the Annual
Computer Security Applications Conference (ACSAC), 2012.

[266] Marina Sokolova and Guy Lapalme. A systematic analysis
of performance measures for classification tasks. Information
Processing and Management, 2009.

184 machine learning for security in hostile environments

[267] Robin Sommer and Vern Paxson. Outside the closed world:
On using machine learning for network intrusion detection.
In Proc. of the IEEE Symposium on Security and Privacy (S&P).
IEEE, 2010.

[268] Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernan-
des, Bo Li, Amir Rahmati, Florian Tramer, Atul Prakash, and
Tadayoshi Kohno. Physical adversarial examples for object
detectors. In Proc. of the USENIX Workshop on Offensive Tech-
nologies (WOOT), 2018.

[269] Jonghyuk Song, Sangho Lee, and Jong Kim. Crowdtarget:
Target-based detection of crowdturfing in online social net-
works. In Proc. of the ACM Conference on Computer and Com-
munications Security (CCS), 2015.

[270] Angelo Sotgiu, Ambra Demontis, Marco Melis, Battista Big-
gio, Giorgio Fumera, Xiaoyi Feng, and Fabio Roli. Deep
neural rejection against adversarial examples. EURASIP
Journal on Information Security, 2020, 2020. URL https:

//doi.org/10.1186/s13635-020-00105-y.

[271] Nedim Šrndic and Pavel Laskov. Detection of malicious PDF
files based on hierarchical document structure. In Proc. of the
Network and Distributed System Security Symposium (NDSS).
The Internet Society, 2013.

[272] Nedim Srndic and Pavel Laskov. Hidost: a static machine-
learning-based detector of malicious files. EURASIP J. Inf.
Secur., 2016:22, 2016.

[273] Pierre Stock and Moustapha Cissé. Convnets and imagenet
beyond accuracy: Understanding mistakes and uncovering
biases. In Proc. of the European Conference on Computer Vision
(ECCV), 2018.

[274] Gianluca Stringhini, Christopher Kruegel, and Giovanni
Vigna. Shady Paths: Leveraging surfing crowds to detect ma-
licious web pages. In Proc. of the ACM Conference on Computer
and Communications Security (CCS). ACM, 2013.

[275] Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez,
and Jorge Blasco. Dendroid: A text mining approach to
analyzing and classifying code structures in android malware
families. Expert Systems With Applications, 2014.

[276] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour
Ahmadi, Johannes Kinder, Giorgio Giacinto, and Lorenzo
Cavallaro. DroidSieve: Fast and accurate classification of
obfuscated android malware. In Proc. of the ACM Conference
on Data and Applications Security and Privacy (CODASPY),
March 2017.

https://doi.org/10.1186/s13635-020-00105-y
https://doi.org/10.1186/s13635-020-00105-y

bibliography 185

[277] Octavian Suciu, Radu Mărginean, Yiğitcan Kaya, Hal
Daumé III, and Tudor Dumitraş. When Does Machine Learn-
ing FAIL? Generalized Transferability for Evasion and Poi-
soning Attacks. Proc. of the USENIX Security Symposium, 2018.

[278] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to
sequence learning with neural networks. In NIPS, pages
3104–3112, 2014.

[279] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. In ICLR (Poster),
2014.

[280] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2818–
2826, 2016.

[281] Gil Tahan, Lior Rokach, and Yuval Shahar. Mal-id: Automatic
malware detection using common segment analysis and
meta-features. Journal of Machine Learning Research (JMLR),
2012.

[282] Kimberly Tam, Salahuddin J Khan, Aristide Fattori, and
Lorenzo Cavallaro. CopperDroid: Automatic Reconstruction
of Android Malware Behaviors. In Proc. of the Network and
Distributed System Security Symposium (NDSS), 2015.

[283] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh,
and Lorenzo Cavallaro. The evolution of android malware
and android analysis techniques. ACM Computing Surveys
(CSUR), 2017.

[284] Kymie M. C. Tan and Roy A. Maxion. "why 6?" defining
the operational limits of stide, an anomaly-based intrusion
detector. In Proc. of the IEEE Symposium on Security and Privacy
(S&P), 2002.

[285] Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman
Goyal, Vishrav Chaudhary, Jiatao Gu, and Angela Fan. Mul-
tilingual translation with extensible multilingual pretraining
and finetuning. CoRR, abs/2008.00401, 2020.

[286] Ronghua Tian, Lynn Margaret Batten, Md. Rafiqul Islam,
and Steven Versteeg. An automated classification system
based on the strings of trojan and virus families. In Proc. of
the International Conference on Malicious and Unwanted Software
(MALWARE), 2009.

[287] Alexander Warnecke Konrad Rieck Tom Ganz, Martin Här-
terich. Explaining graph neural networks for vulnerability

186 machine learning for security in hostile environments

discovery. In Proc. of the ACM Workshop on Artificial Intelligence
and Security (AISec), 2021.

[288] Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, Ning Zhang,
and Yevgeniy Vorobeychik. Improving robustness of ML
classifiers against realizable evasion attacks using conserved
features. In Proc. of the USENIX Security Symposium. USENIX
Association, 2019.

[289] Antonio Torralba and Alexei A Efros. Unbiased look at
dataset bias. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2011.

[290] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Stealing machine learning models via
prediction apis. In Proc. of the USENIX Security Symposium,
2016.

[291] Florian Tramèr, Pascal Dupré, Gili Rusak, Giancarlo Pelle-
grino, and Dan Boneh. Adversarial: Perceptual ad blocking
meets adversarial machine learning. In Proc. of the ACM Con-
ference on Computer and Communications Security (CCS). ACM,
2019.

[292] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang,
Bin Yang, Richard Du, Frank Cheng, and Raquel Urtasun.
Physically Realizable Adversarial Examples for LiDAR Object
Detection. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[293] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and
Pablo G Bringas. Sok: Deep packer inspection: A longitudinal
study of the complexity of run-time packers. In Proc. of the
IEEE Symposium on Security and Privacy (S&P), 2015.

[294] Phani Vadrevu, Babak Rahbarinia, Roberto Perdisci, Kang
Li, and Manos Antonakakis. Measuring and detecting mal-
ware downloads in live network traffic. In Proc. of the Euro-
pean Symposium on Research in Computer Security (ESORICS).
Springer, 2013.

[295] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,
Patrick Lam, and Vijay Sundaresan. Soot: A java bytecode
optimization framework. In Proc. of the Conference of the Center
for Advanced Studies on Collaborative Research (CASCON). IBM
Corp., 1999.

[296] Erik van der Kouwe, Dennis Andriesse, Herbert Bos, Cris-
tiano Giuffrida, and Gernot Heiser. Benchmarking Crimes:
An emerging threat in systems security. arXiv preprint, 2018.

[297] Erik van der Kouwe, Gernot Heiser, Dennis Andriesse, Her-
bert Bos, and Cristiano Giuffrida. SoK: Benchmarking Flaws

bibliography 187

in Systems Security. In Proc. of the IEEE European Symposium
on Security and Privacy (EuroS&P), 2019.

[298] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

[299] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-
Antoine Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proc. of the International
Conference on Machine Learning (ICML), 2008.

[300] Vladimir Vovk. Conditional validity of inductive conformal
predictors. Journal of Machine Learning Research (JMLR), 92

(2-3), 2013.

[301] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer.
Algorithmic learning in a random world. Springer-verlag New
York Inc., 2010. ISBN 9781441934710.

[302] Vladimir Vovk, Ilia Nouretdinov, Valery Manokhin, and
Alexander Gammerman. Cross-conformal predictive distri-
butions. In Proc. of the PMLR Workshop on Conformal Prediction
and its Applications (COPA), volume 91. PMLR, 2018.

[303] Nedim Šrndić and Pavel Laskov. Practical evasion of a
learning-based classifier: A case study. In Proc. of the IEEE
Symposium on Security and Privacy (S&P), 2014.

[304] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and
Sameer Singh. Universal adversarial triggers for attacking
and analyzing NLP. In EMNLP/IJCNLP, 2019.

[305] Alexander Warnecke, Daniel Arp, Christian Wressnegger,
and Konrad Rieck. Evaluating explanation methods for deep
learning in security. In Proc. of the IEEE European Symposium
on Security and Privacy (EuroS&P), 2020.

[306] Webroot Inc. Malware as a service: As easy as it
gets. https://www.webroot.com/blog/2016/03/31/

malware-service-easy-gets/, 2021. (last visited Jan. 22,
2021).

[307] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and
Wu Zhou. Deep ground truth analysis of current android
malware. In Proc. of the Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA), 2017.

[308] Mark Weiser. Program slicing. In Proc. of the International
Conference on Software Engineering (ICSE). IEEE Press, 1981.
URL http://dl.acm.org/citation.cfm?id=800078.802557.

https://www.webroot.com/blog/2016/03/31/malware-service-easy-gets/
https://www.webroot.com/blog/2016/03/31/malware-service-easy-gets/
http://dl.acm.org/citation.cfm?id=800078.802557

188 machine learning for security in hostile environments

[309] Gary M Weiss and Foster Provost. Learning when training
data are costly: The effect of class distribution on tree induc-
tion. Journal of Artificial Intelligence Research (JAIR), 2003.

[310] Karl R. Weiss, Taghi M. Khoshgoftaar, and Dingding Wang. A
survey of transfer learning. Journal of Big Data, 3:9, 2016.

[311] William Weiss and Cherie D’Mello. Fundamentals of model
theory. Topology Atlas, 2000.

[312] David H. Wolpert. The lack of a priori distinctions between
learning algorithms. Neural Computation, 1996.

[313] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell.
Understanding data augmentation for classification: When to
warp? In International Conference on Digital Image Computing:
Techniques and Applications (DICTA), 2016.

[314] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan
Xiong, Fengyuan Xu, Haoyu Wang, Peng Gao, Zhuotao Liu,
Feng Xu, and Jian Lu. Deepintent: Deep icon-behavior learn-
ing for detecting intention-behavior discrepancy in mobile
apps. In Proc. of the ACM Conference on Computer and Commu-
nications Security (CCS). ACM, 2019.

[315] Qixue Xiao, Yufei Chen, Chao Shen, Yu Chen, and Kang Li.
Seeing is not believing: Camouflage attacks on image scaling
algorithms. In Proc. of the USENIX Security Symposium, 2019.

[316] Ke Xu, Yingjiu Li, Robert H. Deng, Kai Chen, and Jiayun
Xu. Droidevolver: Self-evolving android malware detection
system. In Proc. of the IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE, 2019.

[317] Teng Xu, Gerard Goossen, Huseyin Kerem Cevahir, Sara
Khodeir, Yingyezhe Jin, Frank Li, Shawn Shan, Sagar Patel,
David Freeman, and Paul Pearce. Deep entity classification:
Abusive account detection for online social networks. In Proc.
of the USENIX Security Symposium, 2021.

[318] Weilin Xu, Yanjun Qi, and David Evans. Automatically evad-
ing classifiers. In Proc. of the Network and Distributed System
Security Symposium (NDSS), 2016.

[319] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi,
Ali Ahmadzadeh, Xinyu Xing, and Gang Wang. CADE:
detecting and explaining concept drift samples for security
applications. In Proc. of the USENIX Security Symposium, 2021.

[320] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie,
and William Enck. AppContext: Differentiating malicious
and benign mobile app behaviors using context. In Proc. of the
International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2015.

bibliography 189

[321] Wei Yang, Deguang Kong, Tao Xie, and Carl A Gunter. Mal-
ware detection in adversarial settings: Exploiting feature
evolutions and confusions in android apps. In Proc. of the An-
nual Computer Security Applications Conference (ACSAC). ACM,
2017.

[322] Kai Yu, Tong Zhang, and Yihong Gong. Nonlinear learning
using local coordinate coding. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2009.

[323] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo
Xue. Droid-sec: Deep learning in android malware detection.
In SIGCOMM Computer Communication Review. ACM, 2014.

[324] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao.
Semantics-aware android malware classification using
weighted contextual api dependency graphs. In Proc. of
the ACM Conference on Computer and Communications Security
(CCS). ACM, 2014.

[325] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding,
Yinzhi Cao, Yukun Zhang, Mi Zhang, and Min Yang.
Enhancing state-of-the-art classifiers with api seman-
tics to detect evolved android malware. In Proc. of the
ACM Conference on Computer and Communications Security
(CCS). Association for Computing Machinery, 2020. URL
https://doi.org/10.1145/3372297.3417291.

[326] Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel
Egele, and Ajay Joshi. Hardware performance counters
can detect malware: Myth or fact? In Proc. of the ACM Asia
Conference on Computer Computer and Communications Security
(ASIA CCS). ACM, 2018.

[327] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang,
Linhai Song, and Gang Wang. Measuring and modeling the
label dynamics of online anti-malware engines. In Proc. of the
USENIX Security Symposium, 2020.

[328] Yongchun Zhu, Dongbo Xi, Bowen Song, Fuzhen Zhuang,
Shuai Chen, Xi Gu, and Qing He. Modeling users’ behavior
sequences with hierarchical explainable network for cross-
domain fraud detection. In Proc. of the International World
Wide Web Conference (WWW), 2020.

[329] Ziyun Zhu and Tudor Dumitras. Featuresmith: Automatically
engineering features for malware detection by mining the
security literature. In Proc. of the ACM Conference on Computer
and Communications Security (CCS). ACM, 2016.

[330] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He.
A comprehensive survey on transfer learning. CoRR,
abs/1911.02685, 2019.

https://doi.org/10.1145/3372297.3417291

190 machine learning for security in hostile environments

[331] Giulio Zizzo, Chris Hankin, Sergio Maffeis, and Kevin Jones.
Adversarial machine learning beyond the image domain. In
Proc. of the ACM Design Automation Conference (DAC), 2019.

	I Prologue
	Overview
	Machine Learning and Security

	II Adversarial Interactions
	Characterizing Concept Drift in Security
	Realizable Adversarial Attacks in Security

	III Detection in a Hostile Environment
	Limiting Experimental Bias in ML for Security
	Identifying and Rejecting Drifting Examples
	Conclusions
	Bibliography

