
Ω

Γ

Γ

x

x + δ*

x + δ* + η

Intriguing Properties of
Adversarial ML Attacks
in the Problem Space

1 King’s College London, UK
2 Royal Holloway, University of London, UK
3 The Alan Turing Institute, UK
 https://s2lab.kcl.ac.uk/intriguing

Fabio Pierazzi*1, Feargus Pendlebury*1,2,3, Jacopo Cortellazzi1, Lorenzo Cavallaro1

Overview
Machine Learning (ML) classifiers have demonstrated impressive performance in
various domains, particularly in discriminating between malicious and benign
behavior in security-sensitive settings (e.g., malware detection, anomaly detection,
code attribution, platform abuse). However, it has been shown that adversaries can
attack classifiers by carefully altering input data in order to manipulate their outputs.

SOLD OUT

Research partially funded by EPSRC grants EP/L022710/2 and EP/P009301/1

01
01
1

11001

10

10
11

10
01

1001

01
10

10101

10
11
01
10
1

1001

10101

101001

011
011

10101010

010
1

A well-studied example of an adversarial ML attack is the evasion attack.
Using a gradient-driven methodology, it's possible to calculate an ideal
perturbation to apply to the original object which will result in the
target classifier misidentifying it as a different class.

δ* x

Problem-Space Constraints
In order to formally express realizable attacks, we
identify four main sets of constraints common to all
problem-space manipulations:

Harvesting Benign Gadgets

Generating Adversarial Examples

Π
T

Υ
Λ

Available transformations: the viable modifications which can
be performed in the problem space by the attacker (e.g., only
addition and not removal).

Preserved semantics: behaviour that should remain during
mutation, w.r.t. specific feature abstractions the attacker aims to
be resilient against (e.g., in programs, the same dynamic call
traces). Semantics may also be preserved by construction.

Plausibility: how to determine if the generated example is
realistic upon manual inspection (e.g., an adversarial image
looks like a valid image from the training distribution).

Robustness to preprocessing: robustness against non-ML
techniques that could trivially defeat the attack (e.g., filtering in
images, dead code elimination in programs).

The Nature of Side-Effects
Satisfying problem-space constraints often produces
side-effect features which can prevent optimal
gradient-driven attacks.

After following the gradient-based attack ∗ derived from on the
feasible feature space , a necessary projection to fit into the feasible
problem space results in additional features which may have
positive or negative effects on the classification of the attack point.

x + δ* x
Ω

Γ η

Evading Android Malware Detectors
With this formalization, we can design a new attack to evade Android classifiers that
overcomes limitations of past solutions in this domain. We borrow methods from
automated software transplantation to transplant benign code slices from real apps
to a malicious host and trick the detector.

T Code addition through automated software transplantation.

Υ Malicious semantics are preserved by construction using opaque
predicates (new benign behaviour is never executed at runtime).

Π Only functional code is injected rather than orphaned urls, api calls, etc.
Statistical footprint (e.g, code size) remains close to the benign distribution.

Λ Robust to: removal of redundant code, undeclared variables, unlinked
resources, undefined references, naming conflicts, no-op instructions.

DEX DEX DEX DEX DEX

Identify feature
entry point

Choose any vein
(backward slice)

Collect organ
(forward slice)

Include transitive
dependencies

Collect additional
references

1 2 3 4 5 Store organs in
an ‘ice-box’

6

Identify activity
in dex

Extract intent
creation and
startActivity()

Gather activity
definition

Recursively collect
dependencies

Include resources
and permissions
used by activity

Save gadget to a
database ready for
the attack

</> </> </> </> </>

</>

To preserve semantics,
the vein is guarded by an
opaque predicate

</>

</>

First, use the classifier’s
feature weights to select
the ‘most benign’ feature

Then a candidate organ
that exhibits the chosen
feature is selected

Next, the chosen parts
are repackaged back
into an APK

Finally, the classifier
is queried again. If
still malicious, we
repeat.

Repeat until misclassification successful

Otherwise, success!

!?

However, in many settings it is not possible to convert this ideal feature
vector back into a real problem-space object due to the inverse feature
mapping problem. In these cases, the ideal transformations required to
induce in are simply not available because of various constraints that
exist only in the problem space (e.g., plausibility).

δ* x

In this work we clarify the relationship between feature-space and problem-space and
propose a general formalization for problem-space attacks, including a
comprehensive set of constraints to consider. This allows us to highlight the strengths
and weaknesses of different approaches and better formulate novel attacks.

“panda”
56.7% confidence

“gibbon”
99.3% confidence

+ =

Based on the conference paper presented at IEEE Security and Privacy, 2020

When there’s a need to evade detection…

…feature-space perturbations make a good disguise…

…but in the problem space, the ideal transformations might not be available.

