
LAMD: Context-driven Android Malware Detection and Classification with LLMs

Xingzhi Qian∗†, Xinran Zheng∗†, Yiling HeB†, Shuo Yang‡ and Lorenzo Cavallaro†
†University College London ‡University of Hong Kong

†{xingzhi.qian.23, xinran.zheng.23, yiling-he, l.cavallaro}@ucl.ac.uk
‡shuoyang.ee@gmail.com

Abstract—The rapid growth of mobile applications has esca-
lated Android malware threats. Although there are numerous
detection methods, they often struggle with evolving attacks,
dataset biases, and limited explainability. Large Language
Models (LLMs) offer a promising alternative with their zero-
shot inference and reasoning capabilities. However, applying
LLMs to Android malware detection presents two key chal-
lenges: (1) the extensive support code in Android applica-
tions, often spanning thousands of classes, exceeds LLMs’
context limits and obscures malicious behavior within benign
functionality; (2) the structural complexity and interdepen-
dencies of Android applications surpass LLMs’ sequence-
based reasoning, fragmenting code analysis and hindering
malicious intent inference. To address these challenges, we
propose LAMD, a practical context-driven framework to en-
able LLM-based Android malware detection. LAMD integrates
key context extraction to isolate security-critical code regions
and construct program structures, then applies tier-wise code
reasoning to analyze application behavior progressively, from
low-level instructions to high-level semantics, providing final
prediction and explanation. A well-designed factual consis-
tency verification mechanism is equipped to mitigate LLM
hallucinations from the first tier. Evaluation in real-world
settings demonstrates LAMD’s effectiveness over conventional
detectors, establishing a feasible basis for LLM-driven malware
analysis in dynamic threat landscapes.

1. Introduction

The rapid expansion of the Android ecosystem has
heightened security risks, with malware posing serious
threats to user privacy, financial security, and sensitive data.
Over the past decade, researchers have developed various
Android malware detection techniques, yet these methods
face persistent challenges in real-world scenarios. Firstly,
the open and evolving nature of Android complicates the
detection of adaptive malware [1], [2]. Reliance on specific
datasets introduces biases, such as ambiguous timestamps
and randomly selected samples [3], which further compro-
mise model reliability. Additionally, conventional detectors
often lack explainability that fail to offer clear, human-
readable insights into malicious behaviors.

*Equal contribution and co-first authors. BCorresponding Author.

Failure Case 1: Exceed LLMs’ context window.

Decompile LLM

400 Request payload size exceeds
the limit: 20971520 bytes. The file
size is too large.

Final Prediction: BENIGN
Key Findings: While WebView,
JavascriptInterface, and
URL.openConnection pose
risks, no direct malicious
behavior is detected.

Failure Case 2: Failure to capture core behavioral intent.

LLM

Final Prediction: BENIGN
The provided code snippets are part
of the xUtils Android library, does
NOT exhibit malicious behavior.

Final Prediction: MALWARE
Key Findings: Sensitive API
Misuse; Insecure SSL Handling;
Location Tracking Risks. ...
It is recommended to treat this
application as MALWARE.

Decompile

LAMD

Context LLM

LAMD

Context LLM

Figure 1: Two failure cases of applying LLMs to Android
malware detection: (1) context window limitations and (2)
failure to capture malicious intent. LAMD addresses these
challenges by extracting key contexts and tiered reasoning
to capture structures and semantics efficiently.

Large Language Models (LLMs) offer a promising
paradigm shift in malware detection, differing fundamen-
tally from conventional detectors. They achieve zero-shot
inference relying on vast pre-trained knowledge instead
of specifically labelled datasets [4], [5], allowing them to
handle the evolving malware and potential training bias.
Furthermore, to bridge the gap of explainability, the ad-
vanced generative capabilities of LLMs present an opportu-
nity by providing human-readable comprehension, thereby
enhancing malware analysis from both an accuracy and
interpretability perspective.

However, despite the potential, LLMs are not omnipo-
tent. Two primary challenges hinder their effectiveness in
Android malware detection: (1) Excessive support codes
in Android applications: Android malware often comprises

thousands of classes to support diverse functionalities across
various devices. While some LLMs support up to 2 million
tokens [6], directly processing decompiled malware remains
impractical, as some samples would still exceed this limit.
Truncation offers a potential alternative, but it can cause
substantial contextual loss, ultimately degrading analysis
accuracy [7]. More importantly, these normal functional
codes make malicious codes sparse within the program and
become extremely hard to detect. (2) Complex program
structures: Although code exhibits structural characteristics
akin to natural language [8], it remains fundamentally dis-
tinct due to inherent structural complexity [9]. For instance,
deeply nested dependencies, intricate API interactions, and
class hierarchies all extend beyond sequential token-based
modeling. The complexity is further amplified in Android
malware, where obfuscation techniques, multi-component
interactions, and convoluted function invocations obscure
malicious intent. At its core, these challenges raise a funda-
mental research question:

Can we extract crucial semantic and structural infor-
mation from complete application to guide LLMs in
detecting Android malware?

To address this, we draw inspiration from how analysts
examine Android malware in the real world, where they
identify suspicious APIs, interfaces, and function calls, ana-
lyzing contextual relationships to detect malicious behavior
within extensive application code. Our framework aims to
guide LLMs in replicating this analytical process, enhancing
automated explainable Android malware detection.

We propose LAMD, a novel and practical framework
that enables LLMs for explainable Android malware detec-
tion. LAMD consists of two core components: key context
extraction and tier-wise code reasoning. Specifically, we
perform static analysis on APKs and employ a custom back-
ward slicing algorithm to extract key variables, dependen-
cies, and invocations for predefined suspicious APIs. These
elements are transformed into graphical representations, fil-
tering irrelevant code and preserving essential semantics
for the LLM. Furthermore, we introduce tier-wise code
reasoning combined with factual consistency verification,
transferring structured knowledge across multiple tiers to
understand, draw conclusions and explain detection results.
This approach refines the LLM’s understanding of appli-
cations, progressing from fine-grained analysis to higher-
level abstraction. As shown in Figure 1, LAMD effectively
addresses real-world challenges, enabling practical and ex-
plainable LLM-powered Android malware detection. The
main contributions of this paper are as follows:

• We introduce LAMD, the first LLM-powered prac-
tical Android malware detection framework, unlock-
ing LLMs’ ability for explainable Android malware
detection in dynamic scenarios, providing heuristics
for LLM-powered malware-related tasks.

• LAMD integrates key context extraction and tier-
wise code reasoning to filter irrelevant functionalities
while capturing semantics and structural dependen-

cies. A targeted factual consistency verification strat-
egy is also established to ensure accurate reasoning.

• We evaluate LAMD on a collected dataset1 that
reflects the real-world setting. Our results show that
LAMD outperforms conventional learning-based de-
tectors under distribution shift, demonstrating its ef-
fectiveness in detecting and explaining fast evolving
Android malware. Furthermore, we discuss the ten-
sion between learning-based models and pre-trained
LLMs, highlighting promising directions for future
research.

2. Related Work

This section reviews conventional Android malware de-
tection, their real-world limitations, and recent advances
in LLM-powered Android malware detection, situating our
work in this evolving field.

2.1. Learning-based Android Malware Detection

Learning-based Android malware detectors leverage ma-
chine learning or deep learning models to automatically
learn patterns from features extracted by static or dynamic
analysis, enhancing scalability and adaptability [10]. Due to
the high cost of dynamic analysis, most models rely on static
feature extraction through reverse engineering [11], [12].
Despite advancements, these models struggle with concept
drift, where evolving malware variants degrade performance
in real-world deployments [1], [2]. Current works try to miti-
gate it, some of them focus on exploring robust features [13],
[14], [15], [16] and others leverage continual learning [3],
[17], [18] or active learning [19], [20] to let models adapt
to new distribution. However, these methods either target
to specific feature space [13] or introduce high retraining
overhead and the risk of label poisoning [21], [22]. An
additional challenge is explainability, which is critical for
security analysis. Existing methods primarily use feature
attribution techniques, providing importance scores without
generating human-readable behavioral analysis [23], [24].
To address these limitations, researchers are increasingly
exploring LLM-based approaches, which leverage extensive
external knowledge and reasoning capabilities [25], [26],
while tasks related to malware detection and analysis still
remain under-explored.

2.2. LLM-powered Malware Detection

LLMs are increasingly used in security tasks like code
analysis [27], vulnerability detection [28], [29], and malware
classification [30]. Unlike traditional learning-based models,
LLMs offer zero-shot inference capabilities, enabling them
to generalize beyond predefined training data and feature
spaces [4], [5]. This adaptability leads researchers to explore
LLMs for malware detection and analysis, demonstrating

1. The dataset is open-source for further research on LLM-based mal-
ware tasks: https://doi.org/10.5281/zenodo.14884736

Factual consistency checking

sensitive data

Access
APIs

Transmission
APIs

Key Context Extraction

Suspicious APIs
Collection

Extract function calls
related to APIs

API 1 API 2 API n

...

Original Control Flow
Graph (CFG)

Sliced CFG

Backward Program Slicing

Backward
Slicing

Summaries of sliced
CFG for each function Tier 1

Summaries of function
calls related to APITier 2

Summaries of
suspicious APIsTier 3

Final Prediction & Key Findings

1

2
3

4

5

6

Sliced CFG

<dependency type>:
<variable list>

Prompt: Identify variable relationships
of the CFG related to final invocation.

LLM

Data Relationship Coverage

Tier-wise Code Reasoning

manually
extracted data
dependeniesV.S.

Figure 2: The workflow of LAMD. Suspicious APIs are identified via predefined rules (Step 1), and their calling functions
with control flow graphs are extracted through static analysis. A customized backward slicing technique refines relevant
instructions, preserving potential malicious intent (Step 2). In the code reasoning phase, the structured control flow graph,
function relationships, and suspicious APIs form hierarchical tiers for malware detection and human-readable explanations
(Steps 3-6). Factual consistency verification ensures first-tier summary reliability, mitigating hallucination (Step 4).

their potential in security tasks. However, most studies fo-
cus on relatively simple malware ecosystems, such as npm
packages [31], PowerShell scripts [32], Linux binaries [30],
and JavaScript-based threats [33].

Initial attempts at LLM-based Android malware detec-
tion are limited. Walton et al. [34] proposed a hierarchical
approach, analyzing decompiled code at the function, class,
and package levels. However, the lack of filtering mech-
anisms allows benign code to obscure malicious patterns,
reducing detection accuracy and increasing computational
costs. Even with a balanced 200-sample dataset, their best
prompt only achieved 75% accuracy. Zhao et al. [35] re-
lies on predefined feature spaces (Drebin [11]) to generate
feature summaries instead of analyzing raw code. These
summaries are then embedded and fed into a deep neural
network (DNN) for training and detection. While focusing
on the feature’s name is efficient, it lacks structural and invo-
cation insights. Additionally, as a learning-based method, it
also inherits generalization issues and dataset bias influences
of conventional models. These limitations highlight the need
for a framework that leverages LLMs effectively in real-
world Android malware detection, which integrates both
structural and semantic context.

3. Methodology

This section outlines the core components of our frame-
work, LAMD, and how they cooperate to detect and under-
stand Android malware efficiently.

3.1. Overall Architecture

The LAMD framework is designed to extract essential
functionalities and their contextual information, enabling
LLMs to generate both detection and reasoning results. It
consists of two key components: (1) Key Context Extraction
and (2) Tier-wise Code Reasoning, detailed as follows:

• Key Context Extraction: This module identifies
suspicious APIs as seed points and analyzes their
control and data dependencies within the application.

It provides a structured representation of key pro-
gram behaviors by pruning the calling relationships
of potentially malicious interactions.

• Tier-wise Code Reasoning: To preserve contex-
tual integrity while managing token limitations,
LAMD employs a tiered reasoning strategy. It pro-
cesses information at three levels—function, API,
and APK—where the output of each tier informs
the next. To mitigate error propagation, factual con-
sistency verification is applied at the first tier.

Figure 2 shows the pipeline of our framework. Overall, the
raw input to LAMD consists of APK files, from which
suspicious APIs and their sliced contexts are extracted as the
input for LLMs. The malicious behavior of the application
is then determined through three tiers of code reasoning.

3.2. Key Context Extraction

3.2.1. Suspicious API Collection. Malware exploits system
vulnerabilities or API permissions to steal data, manipulate
resources, or maintain persistence. Many attacks rely on sen-
sitive API calls to implement malicious behaviors. We per-
form static analysis on APKs to extract suspicious APIs as
key context to identify malware. Let A = {a1, a2, . . . , an}
be the set of all API calls in an APK. A subset Asus ⊂ A is
deemed suspicious if it interacts with sensitive components,
executes malware-associated operations or exposes sensitive
data. These APIs fall into two categories:

• Sensitive data access APIs: Many apps handle
sensitive data, but assessing developer trustwor-
thiness is challenging. Monitoring APIs access-
ing such data is crucial. Smartphone OSs en-
force permission-based access control, requiring de-
clared permissions for some APIs, while others, like
getPrimaryClip(), bypass enforcement. There-
fore, an API ai falls into this category if it either: (1)
requires explicit permissions for access control, or
(2) grants direct access to sensitive user data without
permission enforcement.

• Sensitive data transmission APIs: Monitoring poten-
tial data exfiltration channels is critical, as malware
often exploits these APIs—commonly referred to as
sink APIs—to transmit sensitive information to ex-
ternal entities. An API aj is classified as suspicious
if it facilitates the transfer of sensitive data to an
external environment.

To extract suspicious APIs, we leverage publicly avail-
able knowledge based on PScout [36], SuSi [37] and Flow-
droid [38] to label them. In a real-world setting, not ev-
ery application contains suspicious APIs. These samples
should be treated individually, where traditional learning-
based malware detectors also struggle to handle [39].

3.2.2. Backward Program Slicing. Extracting suspi-
cious APIs is useful, but analyzing them in isola-
tion often obscures their context. For instance, while
sendTextMessage() is legitimate in messaging apps,
malware may exploit it for premium-rate SMS. To capture
intent, we extract functions invoking suspicious APIs and
refine their control flow graphs (CFGs), G =< N,E >,
where nodes n ∈ N represent basic blocks or instructions,
and edges (e1, e2) ∈ E define control flow.

Recent work reveals that decoder-only Transformers, at
the core of modern LLMs like GPT-4o-mini, are suscepti-
ble to over-squashing [40], where information from distant
tokens is compressed and loses influence. The authors show
how this may impair models in learning proper represen-
tations of similar long sequences, leading to representa-
tion clashes and wrong outcomes for downstream tasks.
The study suggests that input-compressing strategy might
preserve a high the signal-to-noise ratio, able to improve
performance on downstream tasks. We follow this intuition
in our context (the analysis of large complex programs),
aiming at providing quality context to the models to improve
on the downstream tasks. Since CFGs can be large and
noisy, containing instructions that are irrelevant to suspicious
API usages, directly inputting them to LLM risks conflating
malicious and benign patterns, thereby obscuring sensitive
behaviors. We therefore apply backward slicing [41] to
isolate instructions affecting the API invocation and provide
meaningful context to LLM. A slice S is defined by a slicing
criterion C =< s, V > where s is the statement invoking ai
and V includes all parameters. We classify relevant variables
as: (1) Direct relevant variables: Variables’ values can affect
variable v ∈ V of ai (2) Indirect relevant variables: Vari-
ables in branch statements whose value affects invocation of
ai. The backward slicing is to select the set of instructions
in P that directly or indirectly affect the execution or param-
eters of ai. The backward slicing algorithm consists of two
steps to ensure completeness in complex branch structures:

• Variable retrieval: Identify all variables contribut-
ing to the parameters (and internal states) used by
the suspicious API and store them in a candidate set.

• Slices extraction: Append instructions related to
variables collected in the first step.

After slicing, we generate sliced CFGs for each sensi-
tive API, preserving essential control flow and statements.
Notably, If undeclared variables remain in a sliced function,
inter-procedural backward slicing is recursively applied to
its callers until all variables are resolved. The details of
slicing algorithm are shown in Appendix D.

3.3. Tier-wise Code Reasoning

Code reasoning involves analyzing and interpreting code
to understand its behavior, identify potential threats, and
generate meaningful explanations. We propose a three-tier
reasoning strategy that refines APK behavior analysis from
fine- to coarse-grained levels, enhancing both prediction
accuracy and interpretability. This hierarchical approach im-
proves malicious component identification, mitigates LLM
token-length limitations, and captures structural and invoca-
tion semantics through separable reasoning, ensuring a more
effective and scalable malware detection framework.

3.3.1. Tier 1: Function Behavior Summarization. In the
previous stage, several functions invoking suspicious APIs
are extracted and sliced to maintain the related context. Each
sliced CFG of the function is fed to LLM to capture low-
level code patterns and functionalities.

Tier 1: Function Behavior Summarization Prompt

You are a cybersecurity expert specializing in Android
malware analysis. Analyze the provided control flow graph
including instructions related to sensitive API calls in detail.
Control Flow Graph: {CFG content}

3.3.2. Tier 2: API Intent Awareness. The context of a
specific API is typically determined by a series of func-
tions. Beyond function invocation relationships, it is cru-
cial to examine how inter-function associations influence
the API’s intent. Due to diverse contexts, an API may
appear in multiple Function Call Graphs (FCGs). For in-
stance, getDeviceId() is benign when used solely for
local logging but becomes malicious when invoked within
sendImeiToServer(), where it exfiltrates the IMEI to
a remote server. Therefore, at this mid-tier, all functions
associated with a suspicious API are structured into multiple
FCGs to analyze its overall intent. Each node in an FCG is
represented by the generated function summary in tier 1.

Tier 2: API Intent Awareness Prompt

You are a cybersecurity expert specializing in Android
malware analysis. Analyze the main functionality and
behavior of the provided sensitive API based on the function
call graphs and a summary of each function’s behavior.
API name: {API name}
API type: {access/transfer}
for i-th Function Call Graph:

FCG: {FCG content}
{function name}{function summary}

3.3.3. Tier 3: APK Maliciousness Judgement. After ex-
tracting intents from suspicious APIs in an APK, LLMs
assess its maliciousness and justify their decision. and gener-
ate Indicators of Compromise (IoCs), summarizing sensitive
data access, external transmissions, and anomalous behavior
to enhance transparency and trust.

Tier 3: APK Maliciousness Judgement Prompt

You are a cybersecurity expert specializing in Android
malware analysis. Determine whether the application is
MALWARE or BENIGN, citing indicators of compromise,
evidence, and malicious patterns if present. Give a final
prediction and key findings of your analysis.
for i-th API:

API name: {API name}
API type: {access/transfer}
API intent: {API summary}

3.3.4. Factual Consistency Verification. Generating be-
havior summaries with LLMs risks hallucinations [42], pro-
ducing facts inconsistent with instructions. To prevent error
accumulation, we verify function-level summaries before
higher-tier reasoning, leveraging their limited dependencies
and concise structure.

Building on factual consistency verification [43], [44],
we design a structured template to capture data depen-
dencies in sliced CFGs. To enhance inference, we prompt
the LLM to select corresponding data relationships from
the input function based on specific definitions. We define
five dependencies: variable-to-API interactions (direct, tran-
sitive, conditional) and inter-variable relationships (parallel,
derived). The former tracks how variables influence API
execution via assignments, call chains, and control flow,
while the latter captures joint computation and derivation.
Loop dependencies are excluded, as Soot expands loops
when analysing binary code. Appendix C details these de-
pendencies. For consistency verification, we integrate an in-
context learning-based prompt with function summarization,
querying the LLM to extract dependencies in the format:
< dependencies type >:< variable names >.

Factual Consistency Verification Prompt

The provided control flow graph represents a slice of the
function, identifying variable relationships for each statement
leading to the final invocation statement that invokes
{function name}. The output should follow the template:
{template}
Control Flow Graph: {CFG content}
There are FIVE types of relationships:
1. Direct: Variables used directly as function parameters.
Example: invoker1.method(r2) → r1, r2
2. Transitive: Variables whose values flow through
assignments but are not directly used in the invocation.
Example: r2 = r3.getV alue();
invoker1.method(r2) → r3
...

To evaluate the reliability of generated summaries, we

TABLE 1: Overall detection performance (%) across three
test sets with increasing distribution drift (Test 1 < Test 2
< Test 3).

Model Test 1 Test 2 Test 3

F1 FPR FNR F1 FPR FNR F1 FPR FNR

Drebin [11] 81.33 0.40 24.21 73.60 0.99 31.14 61.59 4.36 37.00
DeepDrebin [12] 71.92 0.62 34.12 69.22 0.85 36.13 66.11 0.95 38.58
Malscan [45] 66.37 0.73 46.83 65.45 0.84 47.73 64.54 0.91 48.30
LAMD-R 75.34 5.39 15.24 75.71 4.79 12.99 75.83 4.84 11.19
LAMD-F 87.63 2.00 10.37 87.28 1.85 9.74 87.21 1.77 9.83
LAMD 90.24 1.26 8.44 90.16 1.38 7.79 89.85 1.30 8.47

propose a Data Relationship Coverage (DRC) metric:

DRC =
#{correctly completed dependencies}

#{all selected dependencies}
. (1)

A summary is considered factually consistent if the LLM
accurately reconstructs variable dependencies, i.e., DRC ≥
θ, where θ is a reliability threshold. Otherwise, the summary
is revised to mitigate inaccuracies.

4. Evaluation

This section presents a comprehensive evaluation of
LAMD, assessing its Android malware detection perfor-
mance in real-world scenarios and the quality of its gen-
erated explanations through a series of experiments.

Our experiments are conducted on an RTX A6000 GPU.
For LLM-based reasoning, we utilize GPT-4o-mini [46],
selected for its high efficiency, cost-effectiveness, and strong
reasoning capabilities. The Data Relation Coverage (DRC)
threshold θ is set to 0.95 to balance computational efficiency
and accuracy.

4.1. Dataset Construction

To ensure a realistic dataset, we adhere to the following
principles [3]: (1) Maintain temporal order in training and
testing; (2) Preserve the real-world malware-to-benign ratio;
(3) Ensure diversity by including packed, obfuscated, and
varied market samples.

Based on these principles, we select Android APKs from
Androzoo [47] according to their discovery time, which
is determined by their submission to VirusTotal [48] (as
release timestamps can be unreliable2). The dataset includes
a decade of benign and malicious samples, labeled based
on VirusTotal analysis from Androzoo. Samples flagged by
more than four vendors are classified as malicious. To track
malware family evolution, we used Euphony [49] to extract
family labels. The dataset spans from 2014 to 20233, com-
prising 13,794 samples. The remaining samples are evenly
split into three test sets (about 3,015 each) to represent
incremental distribution drift. Table 6 shows details about
the used dataset.

2. Due to modifiable or randomly generated release times, some times-
tamps (dex date) are inaccurate.

3. as APK labels generally stabilize after about one year in the wild [50],
we choose samples before 2024

TABLE 2: Out-of-distribution (OOD) detection performance
(%) on post-cutoff samples for LAMD and aligned training-
temporal scope for learning-based models.

Model F1 FPR FNR

Drebin [11] 83.72 0.42 22.02
DeepDrebin [12] 79.78 0.39 26.80
Malscan [45] 83.87 0.00 46.77
LAMD 85.71 1.89 14.29

4.2. Metrics

(1) Classification Metrics. To address class imbalance
in Android malware datasets, we use the F1-score to balance
precision and recall, while also minimizing False Positive
Rate (FPR) and False Negative Rate (FNR) to improve
accuracy and reduce manual analysis overhead. Results
are reported as percentages. (2) Summarization Metrics.
Effective malware analysis provides interpretable insights
and aids manual audits. Since malware family identification
often requires expert review, initial categorization priori-
tizes the common sense of behavior patterns. Following
prior work [51], we mainly consider six categories: Ad-
ware, Backdoor, PUA (Potentially Unwanted Applications),
Riskware, Scareware, and Trojan. For evaluation, we adopt
a ChatGPT-based metric [52], [53], [54], where GPT-4o-
mini [46] assesses whether LAMD’s detection aligns with
the expected behaviors of each category [55].

4.3. Baselines

In Android malware detection, an APK serves as input,
containing the codebase (e.g., .dex files) and configuration
files (e.g., AndroidManifest.xml), which provide behavioral
insights like API calls and permissions, represented in vector
or graph formats. We evaluate LAMD against Drebin [11],
DeepDrebin [12], and Malscan [45] which are representative
learning-based methods on these feature formats, with de-
tails in Appendix A. To assess component impact, LAMD-R
removes tier-wise reasoning to test structural and semantic
analysis, while LAMD-F retains reasoning but omits factual
consistency verification to evaluate hallucination control.

4.4. Experiments

We conduct a series of experiments to thoroughly eval-
uate LAMD’s performance in malware detection and the
quality of its generated explanation.

4.4.1. Malware Detection Performance. Table 1 com-
pares LAMD’s detection performance with baselines on test
datasets with the increasing level of drift. LAMD improves
F1-scores by 23.12% and reduces FNR by 71.59% on av-
erage, enhancing detection reliability. While the FPR shows
a slight increase, it is less indicative of true performance
due to class imbalance, where learning-based methods often
misclassify malware as benign because of the dominance

TABLE 3: The quality evaluation of generated detection
analysis. The “Correct” column indicates the number of
categories correctly classified by the LLM.

Category Family Total Correct

Adware gexin, ewind 20 15
Backdoor mobby, hiddad 20 18
PUA umpay, scamapp, apptrack 13 9
Riskware jiagu, smspay, smsreg 25 18
Scareware fakeapp 10 9
Trojan hqwar, hypay 12 12

Overall / 100 81

of benign samples. The performance drop in LAMD-R
highlights the necessity of hierarchical code summarization,
and the slight decline in LAMD-F underscores the role of
hallucination mitigation. By refining input code and extract-
ing key information, LAMD minimizes hallucination risks,
ensuring more reliable malware detection.

We performed an additional out-of-distribution (OOD)
experiments designed to simulate a temporal natural drift
by aligning GPT-4o-mini’s pre-training cutoff date (October
2023) with a dataset comprising samples of newer times-
tamps. As detailed in Table 5, to make a fair comparison,
LAMD is tested on samples from November and December
2023, while learning-based models are assessed from May-
June 2020, the first two months following their training
phase. Table 2 confirms the trend we have seen in Table 1:
LAMD outperforms baselines and state-of-the-art methods
even under this fair settings. We also observe notable tension
between the two paradigms: the breakdown of F1 score
reports a higher FPR and a lower FNR for LAMD compared
to learning-based approaches. We hypothesize that zero-shot
learners such as LAMD have better generalizability benefit
from their large-scale pre-trained dataset that may general-
ize better against similar threats (resulting in lower FNR).
Conversely, they suffer from making more mistakes due to
the lack of a smaller, task-dependent dataset (lower FPR for
learning-based approaches). If true, this opens interesting
research opportunities to study tensions between the two
paradigms.

4.4.2. Effectiveness of explanations. To assess analysis
quality, we validate 100 correctly detected malware samples.
Results show that 81 out of 100 samples are correctly clas-
sified into their respective categories. Table 3 summarizes
the sample distribution and classification accuracy across
categories. Due to their less distinct malicious patterns,
Adware and Riskware pose greater challenges to accurate
analysis compared to other categories, contributing to their
higher misclassification rates.

4.4.3. Cost. We estimate the overall cost of evaluating
LAMD. Using GPT-4o-mini as our base LLM, which costs
$0.15 per 1M tokens for input and $0.6 per 1M tokens for
output [46], the total expense for our test set of 9,046 APKs
amounts to approximately $1800, averaging $0.199 per apk.

The cost for each apk varies depending on the number of
sliced CFGs extracted and suspicious APIs the app invokes.
While this demonstrates the feasibility of deploying LAMD
in real-world scenarios, the operational expense remains
non-trivial for large-scale applications. Future work could
explore the effectiveness of applying LAMD with locally
deployed LLMs like DeepSeek [56] and Llama [57] to avoid
cloud-based API fees.

5. Case Study

This section demonstrates how LAMD overcomes the
limitations of current LLMs in Android malware detection.
Since LLMs cannot process APKs directly, we use JADX4

to decompile them, concatenating all pseudo source codes
for input [52]. Besides GPT-4o-mini, we select Gemini 1.5
pro [6] as another comparison, which claims their longest
context windows and for its malware detection capabilities.

Figure 1 highlights key failure cases. In the first example,
we decompile a randomly selected sample5, which contains
1,547,806 lines of code, even after restricting the scope
to the “source/com” folder containing critical files. Gemini
1.5 Pro fails to process it, exceeding its 20,971,520-byte
context limit, while LAMD enables GPT-4o-mini (with 10×
lower token capacity) to generate an accurate prediction,
demonstrating its ability to efficiently analyze large-scale
Android applications within constrained LLM contexts.

In the second case, we verify the detection ability of
LAMD. Analyzing an SMSReg malware sample6, Gem-
ini misclassifies it as “BENIGN”, erroneously identifying
it as part of the “xUtils” library due to excessive be-
nign classes disguising malicious behavior. With LAMD,
both GPT-4o-mini and Gemini 1.5 pro correctly classify
it as malware and identify key behaviors. The SMSReg
malware family usually harvests device data, sends unau-
thorized SMS, and registers users for premium services
to evading detection. Detection explanations enhanced by
LAMD align with these behaviors, showing unauthorized
access to getDeviceId(), getSubscriberId(), and
sendTextMessage(), reflection-based evasion, insecure
SSL handling, and excessive location tracking—all indica-
tive of SMS fraud and unauthorized transactions.

GPT-4o-mini Output with LAMD:

Final Prediction: MALWARE
Key Findings:
* Sensitive API Misuse: Uses “getDeviceId()”,
“getSubscriberId()”, and “sendTextMessage()” via reflection
to bypass access controls for data harvesting.
* SSL Vulnerability: Unchecked “SslErrorHandler.proceed()”
and “onReceivedSslError” expose users to MITM attacks.
* Location Tracking: Collects “getLastKnownLocation” and
“requestLocationUpdates” without user consent.

4. https://github.com/skylot/jadx
5. MD5: c37e223e3388b31b323ad39af45180fc
6. MD5: 2be97287c6af70f2074686b1a9021c06

Gemini Output with LAMD:

Final Prediction: MALWARE
Key Findings:
* Extensive use of sensitive APIs (e.g., “getDeviceId()”,
“getSubscriberId()”, “sendTextMessage()”) strongly
suggesting data exfiltration and unauthorized actions.
* Unconditional “SslErrorHandler.proceed()” bypass risks
data security and enables MITM attacks.
* Collects and transmits data to remote servers with
obfuscation and poor error handling.

6. Discussion

While LLMs improve Android malware detection, their
general pre-training limits fine-grained behavior analysis.
The phenomenon of over-squashing [40] in LLMs still
introduces challenges to successfully identify key aspects
within complex programs. Future research can benefit from
domain-specific fine-tuning or external knowledge integra-
tion [58]. Meanwhile, learning-based methods remain es-
sential for capturing overall insights in non-drift scenarios.
Our experiments find that while LLMs excel in adapting
to unseen threats, they require significantly more computa-
tional resources and incur higher costs, highlighting effective
strategies to combine these two paradigms and maximize
their complementary strengths. In future work, we plan
to explore how LAMD and more generally context-aware
LLMs perform against recent approaches aimed at learn-
ing temporally invariant features [59], [60]. These findings
open interesting research opportunities to better understand
the tension between learning-based models and pre-trained
LLMs.

7. Conclusion

Large language models’ superior zero-shot inference
offers a promising solution for Android malware detectors to
handle distribution drift, dataset bias and explainability gaps
in real-world scenarios but struggle with excessive support
code and complex program structures. To address these
challenges, we propose LAMD, the first practical framework
enabling LLMs for explainable Android malware detection.
Our evaluation in the real-world setting demonstrates that
LAMD outperforms conventional detectors by effectively
analyzing complex structures and semantics. LAMD unlocks
LLMs’ potential in Android security, paving the way for AI-
driven malware analysis.

References

[1] R. Jordaney, K. Sharad, S. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware
classification models,” USENIX Security Symposium,USENIX Secu-
rity Symposium, Dec 2016.

[2] F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro, “Transcend-
ing transcend: Revisiting malware classification in the presence of
concept drift,” in 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 2022, pp. 805–823.

[3] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“{TESSERACT}: Eliminating experimental bias in malware classifi-
cation across space and time,” in 28th USENIX security symposium
(USENIX Security 19), 2019, pp. 729–746.

[4] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners,” Advances in neural infor-
mation processing systems, vol. 35, pp. 22 199–22 213, 2022.

[5] T. Schick, J. Dwivedi-Yu, R. Dessı̀, R. Raileanu, M. Lomeli, E. Ham-
bro, L. Zettlemoyer, N. Cancedda, and T. Scialom, “Toolformer:
Language models can teach themselves to use tools,” Advances in
Neural Information Processing Systems, vol. 36, pp. 68 539–68 551,
2023.

[6] G. Team, P. Georgiev, V. I. Lei, R. Burnell, L. Bai, A. Gulati,
G. Tanzer, D. Vincent, Z. Pan, S. Wang et al., “Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of context,” arXiv
preprint arXiv:2403.05530, 2024.

[7] X. Zhou, K. Kim, B. Xu, D. Han, and D. Lo, “Out of sight,
out of mind: Better automatic vulnerability repair by broadening
input ranges and sources,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, 2024, pp. 1–13.

[8] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software,” Communications of the ACM, vol. 59, no. 5,
pp. 122–131, 2016.

[9] H. He, X. Lin, Z. Weng, R. Zhao, S. Gan, L. Chen, Y. Ji, J. Wang,
and Z. Xue, “Code is not natural language: Unlock the power of
semantics-oriented graph representation for binary code similarity
detection,” in 33rd USENIX Security Symposium (USENIX Security
24), PHILADELPHIA, PA, 2024.

[10] J. Liu, J. Zeng, F. Pierazzi, L. Cavallaro, and Z. Liang, “Unraveling
the key of machine learning solutions for android malware detection,”
arXiv preprint arXiv:2402.02953, 2024.

[11] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[12] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in Computer Security–
ESORICS 2017: 22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II
22. Springer, 2017, pp. 62–79.

[13] Y. Yang, B. Yuan, J. Lou, and Z. Qin, “Scrr: Stable malware detection
under unknown deployment environment shift by decoupled spurious
correlations filtering,” IEEE Transactions on Dependable and Secure
Computing, 2024.

[14] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé et al., “Deep
android malware detection,” in Proceedings of the seventh ACM on
conference on data and application security and privacy, 2017, pp.
301–308.

[15] D. Angioni, L. Demetrio, M. Pintor, and B. Biggio, “Robust ma-
chine learning for malware detection over time,” arXiv preprint
arXiv:2208.04838, 2022.

[16] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang,
M. Zhang, and M. Yang, “Enhancing state-of-the-art classifiers
with api semantics to detect evolved android malware,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, Oct 2020. [Online]. Available:
http://dx.doi.org/10.1145/3372297.3417291

[17] Y. Chen, Z. Ding, and D. Wagner, “Continuous learning for android
malware detection,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 1127–1144.

[18] V. Y. F. Tan, P. L.A., and K. Jagannathan, “Recent advances
in concept drift adaptation methods for deep learning,” in
Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence, Jun 2022. [Online]. Available:
http://dx.doi.org/10.24963/ijcai.2022/784

[19] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “Droidevolver: Self-
evolving android malware detection system,” in 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2019, pp.
47–62.

[20] F. Ceschin, M. Botacin, H. M. Gomes, F. Pinagé, L. S. Oliveira, and
A. Grégio, “Fast & furious: On the modelling of malware detection
as an evolving data stream,” Expert Systems with Applications, vol.
212, p. 118590, 2023.

[21] S. Yang, X. Zheng, J. Li, J. Xu, X. Wang, and E. C. Ngai, “Recda:
Concept drift adaptation with representation enhancement for net-
work intrusion detection,” in Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2024, pp.
3818–3828.

[22] Z. Kan, F. Pendlebury, F. Pierazzi, and L. Cavallaro, “Investigating
labelless drift adaptation for malware detection,” in Proceedings of
the 14th ACM Workshop on Artificial Intelligence and Security, 2021,
pp. 123–134.

[23] Y. He, J. Lou, Z. Qin, and K. Ren, “Finer: Enhancing state-of-the-art
classifiers with feature attribution to facilitate security analysis,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 416–430.

[24] M. K. Belaid, E. Hüllermeier, M. Rabus, and R. Krestel, “Do we need
another explainable ai method? toward unifying post-hoc xai evalua-
tion methods into an interactive and multi-dimensional benchmark,”
arXiv preprint arXiv:2207.14160, 2022.

[25] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic generation
of programming exercises and code explanations using large language
models,” in Proceedings of the 2022 ACM Conference on Interna-
tional Computing Education Research-Volume 1, 2022, pp. 27–43.

[26] S. MacNeil, A. Tran, D. Mogil, S. Bernstein, E. Ross, and Z. Huang,
“Generating diverse code explanations using the gpt-3 large language
model,” in Proceedings of the 2022 ACM Conference on International
Computing Education Research-Volume 2, 2022, pp. 37–39.

[27] T. Ahmed, K. S. Pai, P. Devanbu, and E. Barr, “Automatic semantic
augmentation of language model prompts (for code summarization),”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, 2024, pp. 1–13.

[28] Y. Sun, D. Wu, Y. Xue, H. Liu, W. Ma, L. Zhang, Y. Liu,
and Y. Li, “Llm4vuln: A unified evaluation framework for decou-
pling and enhancing llms’ vulnerability reasoning,” arXiv preprint
arXiv:2401.16185, 2024.

[29] S. Ullah, M. Han, S. Pujar, H. Pearce, A. Coskun, and G. Stringhini,
“Llms cannot reliably identify and reason about security vulnera-
bilities (yet?): A comprehensive evaluation, framework, and bench-
marks,” in IEEE Symposium on Security and Privacy, 2024.

[30] P. M. S. Sánchez, A. H. Celdrán, G. Bovet, and G. M. Pérez, “Transfer
learning in pre-trained large language models for malware detection
based on system calls,” arXiv preprint arXiv:2405.09318, 2024.

[31] Z. Yu, M. Wen, X. Guo, and H. Jin, “Maltracker: A fine-grained npm
malware tracker copiloted by llm-enhanced dataset,” in Proceedings
of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2024, pp. 1759–1771.

[32] J. Deng, X. Li, Y. Chen, Y. Bai, H. Weng, Y. Liu, T. Wei, and W. Xu,
“Raconteur: A knowledgeable, insightful, and portable llm-powered
shell command explainer,” arXiv preprint arXiv:2409.02074, 2024.

[33] Y. Zhang, X. Zhou, H. Wen, W. Niu, J. Liu, H. Wang, and Q. Li,
“Tactics, techniques, and procedures (ttps) in interpreted malware:
A zero-shot generation with large language models,” arXiv preprint
arXiv:2407.08532, 2024.

[34] B. J. Walton, M. E. Khatun, J. M. Ghawaly, and A. Ali-Gombe,
“Exploring large language models for semantic analysis and catego-
rization of android malware,” arXiv preprint arXiv:2501.04848, 2025.

[35] W. Zhao, J. Wu, and Z. Meng, “Apppoet: Large language model
based android malware detection via multi-view prompt engineering,”
Expert Systems with Applications, vol. 262, p. 125546, 2025.

[36] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012
ACM conference on Computer and communications security, 2012,
pp. 217–228.

[37] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach
for classifying and categorizing android sources and sinks.” in NDSS,
vol. 14, no. 1125, 2014.

[38] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” ACM sigplan notices, vol. 49, no. 6, pp. 259–269,
2014.

[39] Y. He, Y. Liu, L. Wu, Z. Yang, K. Ren, and Z. Qin, “Msdroid:
Identifying malicious snippets for android malware detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 20, no. 3,
pp. 2025–2039, 2022.

[40] F. Barbero, A. Banino, S. Kapturowski, D. Kumaran,
J. Madeira Araújo, O. Vitvitskyi, R. Pascanu, and P. Veličković,
“Transformers need glasses! information over-squashing in language
tasks,” Advances in Neural Information Processing Systems, vol. 37,
pp. 98 111–98 142, 2024.

[41] M. Weiser, “Program slicing,” IEEE Transactions on software engi-
neering, no. 4, pp. 352–357, 1984.

[42] S. Farquhar, J. Kossen, L. Kuhn, and Y. Gal, “Detecting hallucinations
in large language models using semantic entropy,” Nature, vol. 630,
no. 8017, pp. 625–630, 2024.

[43] Y. Li, L. Li, Q. Yang, M. Litvak, N. Vanetik, D. Hu, Y. Li, Y. Zhou,
D. Xu, and X. Zhang, “Just cloze! a fast and simple method for eval-
uating the factual consistency in abstractive summarization,” arXiv
preprint arXiv:2210.02804, 2022.

[44] A. Wang, K. Cho, and M. Lewis, “Asking and answering questions
to evaluate the factual consistency of summaries,” arXiv preprint
arXiv:2004.04228, 2020.

[45] Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin, “Malscan:
Fast market-wide mobile malware scanning by social-network cen-
trality analysis,” in 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2019, pp. 139–
150.

[46] OpenAI, “Hello gpt-4o,” 2024, accessed: Feb. 3, 2025.
[Online]. Available: https://openai.com/index/gpt-4o-mini-advancing-
cost-efficient-intelligence/

[47] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon,
“Androzoo,” in Proceedings of the 13th International Conference
on Mining Software Repositories, May 2016. [Online]. Available:
http://dx.doi.org/10.1145/2901739.2903508

[48] VirusTotal, “Virustotal: Free online virus, malware and url
scanner,” 2004, accessed: 2025-02-14. [Online]. Available:
https://www.virustotal.com

[49] M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé, Y. L.
Traon, J. Klein, and L. Cavallaro, “Euphony: harmonious unification
of cacophonous anti-virus vendor labels for android malware,” in
Proceedings of the 14th International Conference on Mining Software
Repositories. IEEE Press, 2017, pp. 425–435.

[50] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani,
R. Faizullabhoy, L. Huang, V. Shankar, T. Wu, G. Yiu et al.,
“Reviewer integration and performance measurement for malware
detection,” in Detection of Intrusions and Malware, and Vulnera-
bility Assessment: 13th International Conference, DIMVA 2016, San
Sebastián, Spain, July 7-8, 2016, Proceedings 13. Springer, 2016,
pp. 122–141.

[51] I. W. Canada, “Understanding android malware families (uamf): The
foundations (article 1),” 2024, accessed: February 6, 2025. [On-
line]. Available: https://www.itworldcanada.com/blog/understanding-
android-malware-families-uamf-the-foundations-article-1/441562

[52] C. Fang, N. Miao, S. Srivastav, J. Liu, R. Zhang, R. Fang, R. Tsang,
N. Nazari, H. Wang, H. Homayoun et al., “Large language models
for code analysis: Do {LLMs} really do their job?” in 33rd USENIX
Security Symposium (USENIX Security 24), 2024, pp. 829–846.

[53] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz,
E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of
artificial general intelligence: Early experiments with gpt-4. arxiv,”
arXiv preprint arXiv:2303.12712, 2023.

[54] C.-H. Chiang and H.-y. Lee, “Can large language models be an
alternative to human evaluations?” arXiv preprint arXiv:2305.01937,
2023.

[55] M. Gao, J. Ruan, R. Sun, X. Yin, S. Yang, and X. Wan,
“Human-like summarization evaluation with chatgpt,” arXiv preprint
arXiv:2304.02554, 2023.

[56] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu,
S. Ma, P. Wang, X. Bi et al., “Deepseek-r1: Incentivizing reason-
ing capability in llms via reinforcement learning,” arXiv preprint
arXiv:2501.12948, 2025.

[57] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-
Dahle, A. Letman, A. Mathur, A. Schelten, A. Vaughan et al., “The
llama 3 herd of models,” arXiv preprint arXiv:2407.21783, 2024.

[58] Y. He, H. She, X. Qian, X. Zheng, Z. Chen, Z. Qin, and L. Cavallaro,
“On benchmarking code llms for android malware analysis,” arXiv
preprint arXiv:2504.00694, 2025.

[59] X. Zheng, S. Yang, E. C. Ngai, S. Jana, and L. Cavallaro, “Learning
temporal invariance in android malware detectors,” arXiv preprint
arXiv:2502.05098, 2025.

[60] Y. He, J. Lei, Z. Qin, and K. Ren, “Dream: Combating concept drift
with explanatory detection and adaptation in malware classification,”
arXiv preprint arXiv:2405.04095, 2024.

[61] M. L. Menéndez, J. Pardo, L. Pardo, and M. Pardo, “The jensen-
shannon divergence,” Journal of the Franklin Institute, vol. 334, no. 2,
pp. 307–318, 1997.

Appendix A.
Baseline Models

Drebin [11] detects malware using binary feature vectors
derived from nine data types (e.g., hardware components,
API calls, permissions) and classifies samples via a linear
classifier.

DeepDrebin [12] extends Drebin by replacing the linear
classifier with a three-layer deep neural network (DNN)
while retaining the same feature space for feature extraction
and classification.

Malscan [45] employs a graph-based approach, extract-
ing sensitive API calls from APKs and computing four
centrality measures (degree, Katz, proximity, and harmonic
wave centralities) as features. We use the optimal feature
with a Random Forest classifier, which leads to the lowest
overhead.

All of them can be considered as the current state-of-
the-art in Android malware detection.

TABLE 4: Overview of the evaluation dataset, where M denotes malware and B denotes benign applications.

Test Set Time Interval Sample Size Existing Families New Families Packed Malicious (M) Benign (B) M/(M+B) %

Test Set 1 2020.05 – 2021.01 3015 21 24 18 284 2731 9.42
Test Set 2 2021.01 – 2021.12 3015 28 32 30 298 2717 9.88
Test Set 3 2021.12 – 2023.12 3016 34 36 40 302 2714 10.01

TABLE 5: Overview of the OOD evaluation dataset aligned with the GPT-4o-mini pre-training cutoff (October 2023), where
M denotes malware and B denotes benign applications.

Test Set Time Interval Sample Size Existing Families New Families Packed Malicious (M) Benign (B) M/(M+B) %

Learning-based 2020.05 – 2020.06 884 15 7 2 62 822 7.01
LAMD 2023.11 – 2023.12 60 0 1 0 7 53 11.67

TABLE 6: Performance of learning-based methods using Drebin features under different training/validation data volumes.

Sample Size Model Validation Test 1 Test 2 Test 3

F1 FPR FNR F1 FPR FNR F1 FPR FNR F1 FPR FNR

13k Drebin 94.02 0.57 6.58 81.33 0.40 24.21 73.60 0.99 31.14 61.59 4.36 37.00
DeepDrebin 95.72 0.24 6.06 71.92 0.62 34.12 69.22 0.85 36.13 66.11 0.95 38.58

60k Drebin 95.83 0.34 5.28 68.76 0.68 36.67 63.41 1.91 40.12 62.83 2.33 40.28
DeepDrebin 96.68 0.28 4.15 68.82 0.64 36.65 63.48 1.72 40.17 58.99 4.31 41.19

Appendix B.
Impact of Training Dataset Sizes

In real-world scenarios, a large number of Android
applications are packed and obfuscated to bypass malware
detection systems and complicate manual analysis. A no-
table shift occurred post-2020, as more Androzoo samples
adopted these techniques. Consequently, our test set, drawn
from 2020, reflects a more realistic setting. Notably, the
Jensen–Shannon (JS) divergence [61] (measuring the sim-
ilarity between two probability distributions) between the
training and test sets is five times larger than that between
the training and validation sets.

Intuitively, increased training samples should enhance
detection performance in learning-based methods. While
LAMD excels in zero-shot learning, one may argue that
traditional methods are hindered by smaller training datasets
compared to the vast pretraining data leveraged by LLMs.
However, the impact of significant drift warrants reconsider-
ation. Table 6 highlights the performance of learning-based
detectors (e.g., Drebin feature space) across varying dataset
sizes, across the training dataset timeframe. The results
indicate that additional training data does not improve de-
tection of samples with significant drift, though it enhances
performance on in-distribution samples.

Expanding the training set introduces more information,
helping detectors learn clearer decision boundaries, con-
sistent with the principle of empirical risk minimization
(ERM). However, ERM identifies features that distinguish
samples across the entire dataset, and when the training set
is heavily skewed toward older data (e.g., 2014-2019/3),
the model is more likely to learn features representative
of early apps rather than more recent ones. Consequently,
when tested on subsequent months (e.g., Test 1), the model

exhibits worse performance, as it relies on features that are
less effective for newer, drifted samples. This suggests that
while increasing training data is generally beneficial, it may
reinforce outdated patterns in the presence of significant
drift, ultimately impairing generalizability.

Appendix C.
Factual Consistency Verification

To check factual consistency, we leverage data dependencies
that capture relationships between variables and APIs. We
focus on five dependencies (see Table 7) as they represent
fundamental program relationships critical for malware rea-
soning and detection. Specifically:

(1) Variable-to-API Dependencies. These dependencies
determine whether the execution of an API is influenced by
specific variables.

• Direct dependencies: ensure that variables explicitly
control API calls, providing strong evidence of in-
tended execution.

• Transitive dependencies: track how variables propa-
gate through function calls.

• Conditional dependencies: account for control-flow
influences (e.g., if statements), identifying cases
where malicious logic may be context-dependent.

(2) Inter-variable Dependencies. These capture relation-
ships between variables that may affect security-sensitive
operations.

• Parallel dependencies: detect multiple variables
jointly contributing to a computation, highlighting
complex conditions leading to API execution.

TABLE 7: Data dependencies used for factual consistency verification.

Category Type Description

Variable-to-API
Direct A variable directly determines API execution.
Transitive A variable is propagated through a call chain to an API.
Conditional A variable influences API execution via control flow (e.g., if/else).

Inter-variable Parallel Two variables jointly contribute to computing another variable.
Derived A variable is derived from another through computation.

• Derived dependencies: reveal computations that
transform one variable into another, helping detect
disguised or obfuscated malicious behaviors.

By incorporating these dependencies into factual consistency
verification, LAMD ensures that summarized malicious be-
haviors are not based on hallucinatioms but are grounded
in actual program logic, improving both precision and in-
terpretability in Android malware detection.

Appendix D.
Backward Slicing Algorithm

The proposed backward slicing algorithm is shown in Al-
gorithm 1. This backward slicing procedure consists of two
phases: variable retrieval and slice extraction. In Stage 1,
the algorithm tracks variables that influence the suspicious
API invocation ai. Specifically, in Line 2, the algorithm
initializes the worklist with unit containing ai, and in Line
4, it begins iterating through the control flow graph (CFG) in
a backward manner starting from unit, extracting relevant
variables from each unit. The algorithm updates the locals
list by removing defined variables and adding those that
affect ai in Line 13, and stores the updated variables in
varMap in Line 15. Stage 2 focuses on extracting slices
based on varMap. In Line 23, the algorithm resets the
worklist and visited sets, then starts from the predecessors
of the original unit that invoked ai. Line 28 checks the
successors of each unit and identifies those relevant to the
API invocation. The combined slices are formed in Line 29,
integrating all the relevant variables and units, and the algo-
rithm returns the slices in Line 38. This two-phase process
enables the algorithm to isolate the parts of the function that
influence the suspicious API invocation, facilitating further
analysis.

Algorithm 1 Algorithm of Backward Slicing

Require: Control Flow Graph CFG of the function that
invokes the suspicious API ai at unit block unit

1: Stage 1: Variable Retrieval
2: Initialize worklist with unit containing ai
3: Initialize visited← {}, varMap← ∅
4: while worklist ̸= ∅ do
5: Pop currUnit from worklist
6: Initialize locals← {}
7: if currUnit contains ai then
8: Extract variables used by ai and add to locals
9: else

10: Load variables from successors of currUnit using
varMap and add to locals

11: end if
12: if currUnit is relevant to the ai invocation based on

locals then
13: Update locals: remove defined variables, add used

variables that affect the ai invocation
14: end if
15: Store locals in varMap[currUnit]
16: for pred ∈ predecessors of currUnit do
17: if pred /∈ visited then
18: Add predecessor pred to visited and worklist
19: end if
20: end for
21: end while
22: Stage 2: Slices Extraction
23: Initialize slices← {unit}, reset worklist and visited
24: Add predecessors of unit to worklist
25: while worklist ̸= ∅ do
26: Pop currUnit from worklist
27: Load variables from the successors of currUnit us-

ing varMap
28: if currUnit is relevant to the ai invocation based on

the successor variable then
29: Add currUnit to slices
30: end if
31: for pred ∈ predecessors of currUnit do
32: if pred /∈ visited then
33: Add predecessor pred to visited and worklist
34: end if
35: end for
36: end while
37:
38: return slices

