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Abstract—Malware pose a serious and challenging threat
across the Internet and the need for automated learning-based
approaches has become rapidly clear. Machine learning has long
been acknowledged as a promising technique to identify and clas-
sify malware threats; such a powerful technique is unfortunately
often seen as a black-box panacea, where little is understood and
the results—especially with high accuracy—are taken without
questioning their quality. For such reasons, results are often
biased by the choice of empirical thresholds or dataset-specific
artifacts, hindering the ability to set easy-to-understand error
metrics and thus compare different approaches. This setting,
calls for new metrics that look beyond quantitative measurements
(e.g., precision and recall), and help in scientifically assessing
the soundness of the underlying machine learning tasks. To this
end, we propose conformal evaluator, a framework designed at
evaluating the quality of a result in terms of statistical metrics
such as credibility and confidence. Credibility tells you how much
a sample is credited with one given prediction (e.g., a label),
whereas confidence focuses on pointing out how much a given
sample is distinguished from other predictions. Such evaluation
metrics give useful insights, providing a quantifiable per-choice
level of assurance and reliability. Core of conformal evaluator is a
non-conformity measure, which, in essence, allows for measuring
the difference between a sample and a set of samples. For this
reason, our framework is general enough to be immediately
applied by a large class of algorithms that rely on distances to
identify and classify malware, allowing to better understand and
compare machine learning results. To further support our claim,
we present case studies where the outcome of three different
algorithms are evaluated under conformal evaluator settings. We
show how traditional metrics mislead about the performance
of different algorithms. Instead, conformal evaluator’s metrics
enable to understand the reasons behind the performance of a
given algorithm, and reveal shortcomings of apparently highly
accurate methods.

I. INTRODUCTION

The analysis and prompt detection of malicious software
represent one of the most pressing and important issues that
plague the security of the Internet and its users, nowadays.
With more than 500,000 unique malware samples per day re-
ported in Q2 2015 [17], it is clear that manual analysis does not
scale up and the shift is therefore on automatic and adaptive
techniques able to identify unknown and previously-unseen
threats. To this end, machine learning, with a particular em-
phasis on clustering and classification, has long been acknowl-
edged as a promising technique to address such a fundamental
need; botnet detection [8], [30], mobile malware [3], and
malware detection and classification [15], [5], [19], [18], [22]
are just a few explanatory examples.

Looking at the advances in the field, it would seem that
the problem is almost solved. However, assessing the results

of a given algorithm is problematic. With fewer exceptions,
e.g., [20], [3], [31], the lack of publicly-available datasets
hinders the ability to reproduce results. Furthermore the usage
of traditional metrics (e.g., accuracy, precision, recall and
confusion matrices) to assess the performance of a machine
learning algorithm, might produce misleading results. As a
matter of fact such metrics report statistics on correct and
incorrect decisions, but do not capture their quality and are
hence ill-suited to evaluate a given task.

Quite recently, Li et al. considered this problem in [16],
empirically showing that traditional metrics with high accuracy
do not necessarily imply that the underlying machine learning
is good. They show how the dataset is often chosen to
support the claim of the author. Their work focused primarily
on methods specifically built on the available datasets and
that suffered from data over-fitting issues. Conversely, in our
work, we aim at tackling the problem under a broader scope,
providing a way of assessing the quality of a given algorithm
in a scientific and rigorous manner. We are not saying that
traditional metrics do not provide important insights, however
they are just performance indicators and cannot be used to
assess the quality of a given algorithm.

Another factor that influences the outcome of a machine
learning based algorithm is the process of feature selection.
As a matter of fact the algorithm in itself, although designed
appropriately, might not work if the selected features do not
correctly capture and separate the desired qualities of the
samples. One might say that any algorithm works as long
as features are properly selected, and hence it is important
to focus on that process only. However in our work we show
that focusing on features is not enough (see § VI), there might
be algorithms that perform very well even with bad separated
features or algorithms that do not work even with perfect
features.

To address the problem, we propose conformal evaluator,
an evaluation framework that makes use of statistical metrics
to provide a quality evaluation of the algorithm. It is built
around conformal predictor [28], a machine learning algorithm
tailored at classification tasks. It relies on statistics to select
the best result and provide quality guarantees. In this paper,
we rethink conformal predictor as a novel approach to the
problem of evaluating malware clustering and classification
techniques.

In particular, we make the following contributions:
• We extend the quality metrics of conformal predictor

and propose two novel evaluation metrics to capture
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the quality of an algorithm results: algorithm credibility
(§ III-B) and algorithm confidence (§ III-C).

• We propose two novel analyses to produce qualitative
and quantitative metrics to the correctness of a machine
learning process, which can be exploited to evaluate its
outputs (§ IV-A), and how these are influenced by the
dataset composition (e.g. malware families) (§ IV-B). In
practical settings, our technique can be plugged on top of
any machine learning algorithm that relies on a similarity
function to compute distances between a sample and a set
of samples.

• We rely on our analyses to evaluate four different algo-
rithms on a number of different datasets and in different
scenarios. Our experiments clearly show whether we can
trust the results of such algorithms or not, providing
useful qualitative insights.

• We further show how methods (e.g., t-SNE [29] and
PCA [13]) to assess the quality of selected features do not
produce sound results, as shown in § VI, as we do with
conformal evaluator. Particularly, with our experiments,
we show examples where algorithms produce very high
quality results even with very poor sample separation.

We believe that conformal evaluator can help enormously in
building better machine learning based techniques, allowing to
assess both the quality of the algorithm and features altogether.
The need for metrics that takes into account the quality of a
classification/clustering scheme is pressing and we provide a
solution that can be applied to existing algorithms.

The rest of the paper is organized as follows: § II introduces
the problem of clustering and classification of malware, § III
describes conformal evaluator in details, § IV presents our
novel conformal predictor-driven analyses, § V describes the
experiments and discusses their findings, and finally § VII and
§ VIII discuss limitations, future works and conclusions.

II. MACHINE LEARNING AGAINST MALWARE

Malware is a malicious piece of software that is engineered
to steal precious information (e.g., personal data) or to perform
evil actions (e.g., attack a system). As such, malware are
designed to be difficult to detect, so that the threat is as
most persistent as possible. As a matter of fact, new malware
are deployed every day so that security appliances have to
continuously adapt to detect them.

However stealthy, at some point malware has to perform the
malicious activity for which it was designed, hence industry
and research have been focusing on identifying and detecting
such activities. A valid approach consists in finding common
behaviors and group them together in order to find the underly-
ing characteristics that malware belonging to the same family
share. This is usually done using machine learning techniques
that rely on clustering (e.g., [9],[8] and [30]) or classification
(e.g., [22] and [3]).

However, assessing the validity of machine learning tech-
niques is a problem that has not been completely solved.
Particularly, Li et al. in [16] have started to reason about
the problem of assessing the effective validity of traditional

measures, e.g., false positive rate, precision, accuracy, recall
and they have found out that such measures are strongly
influenced by the underlying dataset. Their work suggests that
there is the need for a more scientifically robust approach for
evaluating malware identification methods.

Similar concerns have also been raised in other works
e.g., [4], [23] and [25]. Specifically [25] says:

“The community does not benefit any further from
yet another study measuring the performance of
some previously untried combination of a machine
learning scheme with a particular feature set. The
nature of our domain is such that one can always
find a variation that works slightly better than any-
thing else a particular setting. Unfortunately, while
obvious for those working in the domain for some
time, this fact can be easily lost on newcomers.
Intuitively, when achieving better results on the same
data than anybody else, one would expect this to be
a definite contribution to the progress of the field.
The point we wish to convey however is that we are
working in an area where insight matters much more
than just numerical results”.

The authors here were addressing the intrusion detection
community, however this statement is still valid in any setting
where machine learning is applied to solve security related
problems.

Another relevant work is done by Allix et al. [14], where
the authors show how incorrectly handling a dataset could
potentially lead to biased results. Particularly they historically
consider malware and show that most of the time future knowl-
edge, i.e. malware discovered later, is used to classify old
malware and not vice-versa, leading to non realistic scenarios.
This suggests that there are a lot of common practices within
the machine learning security community that researchers
usually adhere to, but which are not completely understood.

Moreover, Garcı́a et al. [7] highlight another issue concern-
ing the development of new methods. In their survey, the au-
thors review fourteen network-based botnet detection methods
and notice that only one of them makes an actual comparison
with previous works. This is due mainly to practical reasons
such as missing or incomplete public dataset, and algorithm
unavailability for comparison.

As anticipated in the introduction, to evaluate their methods
researchers usually relies on measures that, given a labeled
dataset, analyze the success rate of classification or detection
of malware. In our work we argue that traditional error
metrics, e.g., confusion matrix, accuracy, precision, recall and
ROC curve, suffer from a common flaw (as shown in our
experiments). Specifically they do not investigate the quality
of the single decision, i.e. they don’t take into account how
much good or bad decision is, compared to alternative ones.
Under these premises, traditional metrics potentially base on
weak decisions, i.e., correct choices that are close to wrong
ones and the opposite. In these circumstances, a small variation
in the data can dramatically change the results of the overall
algorithm.
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III. CONFORMAL EVALUATOR

Conformal evaluator (CE) is our evaluation framework built
on top of conformal predictor [28]. Conformal predictor is a
machine learning algorithm, usually applied to classification
problems, that gives a prediction (i.e., a label) with precise
levels of trust on the prediction itself. Specifically, given a
sequence of objects z1, z2 . . . zk ∈ C, and a new object z∗,
conformal predictor enables us to decide whether z∗ ∈ C or
z∗ /∈ C.

In our framework, we dissect this algorithm to provide
two statistical metrics that measure the quality of the results:
algorithm confidence and algorithm credibility. Algorithm
credibility gives valuable insights by telling how much the new
object (e.g., a new malware sample) is credited with a given set
(e.g., a malware family), that reflects the quality of the choice
taken by the algorithm. If we define, in a classification setting,
C as a class of objects with k elements and D as the set of all
the classes of objects (i.e. the whole dataset), by iterating the
process through every class in D, the algorithm confidence
measures how distinguished z∗ is with respect to the other
classes. Algorithm credibility and algorithm confidence are
further explained in § III-B and § III-C.

Core of conformal evaluator, is a non-conformity measure,
a real-valued function A(C, z), which tells how different an
object z is from a set of objects C. Thanks to the real-valued
range of non-conformity measure, conformal evaluator can be
immediately used with well known machine learning methods
such as support-vector machines, neural networks, decision
trees and Bayesian prediction (see [24]) and in general with
any method that makes use of real-valued numbers (i.e., a
similarity function) to distinguish objects. Such flexibility
enables our framework to assess a wide range of algorithms.

Once a non-conformity measure is selected, conformal
evaluator computes a p-value pz∗ which, in essence for a
new object z∗, represents the percentage of objects in {x ∈
C,∀C ∈ D} (i.e. the whole dataset) that are equally or more
estranged to C as z∗. The algorithm is shown in Listing 1.

Data: Dataset D = {z1, ..., zn}, Sequence of objects
C ⊂ D, non-conformity measure A, new object z∗

Result: p-value pz∗

Set provisionally C = C ∪ {z∗}
for i← 1 to n do

αi ←

{
A(C \ zi, zi) if zi ∈ C
A(C, zi) if zi /∈ C

end

pz∗ =
|{j:αj≥αz∗}|

n

Listing 1: P-value calculation used in Conformal Evaluator.

P-values are directly involved in the algorithm credibility
and confidence.

A. Non-conformity Measure

Many machine-learning algorithms for classification are
based on a scoring algorithm that given a training set of
examples C and a test object z∗ will output a prediction score
A(C, z∗). The non-conformity measure is elicited directly
from the scoring function of the algorithm and is one of the
basic blocks of conformal evaluator.

It is used to measure the difference between a group of
objects belonging to the same class (e.g., malware belonging to
the same family) and a new object (i.e., a sample). The higher
the measure, the more different is the object with respect to the
group of objects. Hence, if we take for example two objects,
z1 and z2, and a group of objects C, z1 is more dissimilar than
z2 to C if A(C, z1) > A(C, z2). The real-valued nature of the
non-conformity measure allows for negative values. Whenever
we find a measure that increases as the new object z is similar
to C (i.e., a similarity function), we can easily convert this to
a non-conformity measure by changing its sign. It should be
obvious at this point that conformal evaluator can be applied
on top of almost any classification (or clustering) algorithm
that uses a score to classify a new object (or to assign it to a
cluster).

To give an example, Rieck et al. in [22] use Support Vector
Machine (SVM) as the core of their classification approach.
Whenever a new sample comes in, a score is computed and
the label with the highest score is assigned to the sample.
In this case the score can be converted to a non-conformity
measure, allowing for evaluation of choices through conformal
evaluator.

B. Algorithm Credibility

The first evaluation metric we explore is algorithm credi-
bility. It is defined as the p-value corresponding to the label
chosen by the algorithm under analysis.

It is calculated iterating Algorithm 1 through every class
c1, c2 . . . cm ∈ D, the output of the iteration is a series of
p-values pc1z∗ , p

c2
z∗ . . . p

cm
z∗ which tells us how likely it is that

z∗ ∈ ci,∀i ∈ [1 . . .m].
From Algorithm 1, the p-value is defined as:

pcz∗ =
|{j : αj ≥ αz∗}|

n
(1)

where c is the class the p-value is computed for.
As stated earlier, the p-value measures the fraction of objects

within D, that are at least as different from a class C as the
new object z∗. Therefore a high credibility value means that
z∗ is very similar to the objects in C. This observation alone
can be considered already a good achievement, however high
credibility alone tells us very little with respect to the quality
of the choice, as there may be multiple p-values that are close
to the maximum.

Considering a low credibility value instead, this usually
shows that z∗ is very different from C, yet this could also
reveal that the object is poorly identified. These two obser-
vations show that credibility alone is somewhat insufficient,
hence we introduce another measure: algorithm confidence.
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C. Algorithm Confidence
Algorithm confidence is the second evaluation metric we

explore. For a given choice (e.g., assigning z to a class ci),
confidence tells how certain or how committed the evaluated
algorithm is to the choice. Looking at it from a more formal
perspective, it measures how much the new object z∗ ∈ ci is
distinguishable from other classes cj with j 6= i.

We define the algorithm confidence to be one minus the
maximum p-value among all p-values except the p-value
chosen by the algorithm (i.e., algorithm credibility):

AConf = 1−max(P \ ACred),P = {pc : c ∈ D} (2)

where ACred and AConf are respectively algorithm credi-
bility and algorithm confidence and P is the set of p-values
associated to the possible choices (i.e. classes) for the new
object z∗.

Given an object and a set of possible choices, the high-
est possible value of confidence is the one associated with
the highest p-value. In a conformal predictor setting this is
considered to be the best choice, thus resulting also in the
highest confidence possible, however in our setting, where we
rethink conformal predictor for evaluation purposes, it may
happen that the choice made by the algorithm is not the best
one, reflecting also on the confidence being not optimal. We
will see through the experiments section that this sometimes
brings to valuable insights, especially when the methods under
assessment take choices with low values of confidence and
credibility.

A low value for algorithm confidence indicates that the
given object is similar to other classes as well. Depending
on the algorithm credibility value, this indication may imply
that the decision algorithm is not able to uniquely identify the
classes or, that the new object has features common to two or
more classes. On the other hand a high confidence in general is
a sign that the identification method is good in distinguishing
a class from the others.

As a final remark, before explaining how to use conformal
evaluator for evaluating malware clustering and classification
methods, we would like to highlight that confidence and
credibility are not biased from the number of classes within a
dataset as common measures such as precision and recall are,
as Li et al. have shown in [16]. This means that conformal
evaluator findings are more robust to dataset changes than
other evaluation methods.

IV. FRAMEWORK DESCRIPTION

In the previous section we have introduced conformal
evaluator along with its measures, algorithm confidence and
algorithm credibility. In order to fully leverage their benefits,
we have built a framework around them that, given a dataset
and an algorithm, evaluates the quality of the algorithm by
producing two assessments.

The framework is shown in Figure 1. From the similarity-
based classification/clustering algorithm we elicit a non-
conformity measure which is then used by conformal eval-
uator. Whether intended at classification or clustering, such

algorithms sometimes use methods as an intermediate step to
score the similarity to previous trained malware profiles. In
these instances a non-conformity measure might be elicited
from the intermediate step.

Our framework introduces two novel analyses, which we
briefly outline here below and explain in detail afterwards.

Decision assessment, which helps in understanding how
robust are the choices taken by the evaluated algorithm. It
directly relates to the results given by the similarity-based
classification/clustering algorithm. Alpha assessment, which
gives indication of how good the non-conformity measure is
with respect to the dataset. It provides more profound and
trustworthy insights on how much the algorithm is good (or
bad) with respect to the data at hand. It works by assessing how
well the non-conformity measure, hence the measuring method
of the similarity-based classification/clustering algorithm it-
self, works with the dataset. We call this alpha assessment,
as we often refer to the non-conformity score for object zj as
αj .

A. Decision Assessment

The goal of this analysis is to assess the algorithm decisions
in qualitative manner. To do so, for each new object z∗ (e.g., a
malware) conformal evaluator takes the decision ci ∈ D made
by the algorithm (i.e., the assigned label), and computes its
algorithm credibility and algorithm confidence.

At this point we can evaluate, for each choice, what is the
algorithm credibility and the algorithm confidence behind any
right and wrong choice. Hence, four possible scenarios unfold:
• High algorithm confidence, high algorithm credibility: the

best situation, the algorithm is able to correctly identify
a sample towards one class and one class only.

• High algorithm confidence, low algorithm credibility: the
algorithm is not able to correctly associate the sample to
any of the class present in the dataset

• Low algorithm confidence, low algorithm credibility: the
algorithm gives a label to the sample but it seems to be
more similar to another label

• Low algorithm confidence, high algorithm credibility:
according to the algorithm, it seems that the sample is
similar to two or more classes.

The values of the two measures are then grouped into two
separate sets, correct or wrong, which represents values for
correctly and wrongly classified objects respectively. Values
are then averaged and their standard deviation is also com-
puted, this is done for every class c ∈ D, so that we may
highlight whether the algorithm works consistently against all
classes or if there are difficult classes that the algorithm has
trouble dealing with.

Now, it is interesting to compare the results obtained for
correct and wrong choices. For correct choice it would be
desirable to have high credibility and high confidence. Con-
versely, for wrong choice, it would be desirable to have low
credibility and high confidence. The divergence from these
situations will help us to understand whether the algorithm
takes strong decisions, meaning that there is a strong statistical
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Fig. 1: Evaluating malware classification/clustering with conformal evaluator. Decision assessment is derived from the algorithm
decision alone and it is used to evaluate the quality of correct and incorrect algorithm chooses separately. Alpha assessment
is used to assess how good is the similarity function with respect to the underlying dataset.

evidence to confirm its decisions, or, in contrast, if the deci-
sions taken are easily modified with a minimal modification
to the underlying data.

Looking at the outcome of decision assessment, it is already
possible to understand whether the algorithm works well or
not. Otherwise, it is possible to have an indication where to
look for possible errors or improvements, i.e., which classes
are troublesome, and whether further analysis is needed, e.g.
by resorting to the alpha assessment.

B. Alpha Assessment

Additionally to the decision assessment, which to evaluates
the output of a similarity-based classification/clustering algo-
rithm , another important step in understanding how the algo-
rithm works and possibly its subtleties, consists in assessing
how its inner similarity-based mechanism works with respect
to the available datasets. As a matter of fact, due mainly
to practical reasons, malware similarity-based algorithms are
developed around a specific dataset, insomuch as it is often a
question whether the newly developed algorithm is overfitting
the dataset. Unfortunately the only way to answer this question
is to try the algorithm against as many datasets as possible. In
our research we found out that conformal evaluator can help
with respect to this aspect, when no more than one dataset is
accessible.

The alpha assessment is an analysis that takes into account
how appropriate is the similarity-based algorithm with respect
to a dataset. If the results are too good to be true (i.e., perfect),
then probably the method is most likely overfitting the dataset,
at the same time if the results are poor, then the method is
already bad with the dataset at hand, so it is very likely that
with new datasets it will not work as well as with the base
one.

Furthermore the assessment enables to get insights on
classes or groups of them (e.g., malware families), highlighting
how the similarity based method works against them, and
helping the researcher to gather new intelligence regarding the
peculiarities of each class, hence to possibly narrow down the
places to look into in order to improve the algorithm.

As a first step, for each object zj ∈ D, where cj is zj true
class, we compute its p-values against every possible decision
in the dataset.

We then build a figure in a boxplot fashion [10], contain-
ing the p-values for each decision (e.g., malware families).
By aligning together these boxplots and grouping them by
class/cluster, we can see how much an element of class/cluster
j resembles that of another one according to the non-
conformity measure, which is derived from the evaluated
algorithm.

Apart from the obvious insights that we can gather from this
figure, it also enable for identifying the more problematic cases
(e.g., malware families) within subgroups of two or more,
allowing for reasoning about the similarity-based algorithm
itself.

In the next section we are going to present three case studies
where we evaluate the performance of three algorithms within
the conformal evaluator framework.

V. EXPERIMENTS SET UP AND ANALYSIS

To demonstrate conformal evaluator, in this section we
evaluate three malware classification algorithms, leveraging
the assessments defined in § IV:
• Algorithm 1: Drebin [3], a detection algorithm for ma-

licious android applications.
• Algorithm 2: BotFinder [27], an algorithm for botnet

classification and detection.
• Algorithm 3: algorithm used in the Kaggle’s Microsoft

Malware Classification Challenge [11] achieving position
49th over 377.

The first one, Drebin, detects malicious android applications
based on static analysis of the application’s APK (android
package file). The method consists in extracting various in-
formation from the application manifest and the decompiled
code. This information consists of the requested permissions,
the requested hardware components, the application intents,
the type of application components, various types of API calls,
the effective used permissions (from the decompiled code) and
the network addresses. These features are then used to build
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DREBIN DATASET

ORIGINAL DATASET PERTURBED DATASET

Type Samples Type Samples

Malicious app 5,560 Malicious app 2,702
Benign app 123,453 Benign app 60,000

TABLE I: Dataset composition used by [3]

a model to decide whether new applications are malicious or
not. The detection model is built using a well know machine
learning algorithm, Support Vector Machine (SVM). In our
conformal evaluator we use the distance to the hyperplane
identified by SVM as non-conformity measure, to assess the
results of the detection process. The dataset used in [3] is a
public dataset composed of 123,435 benign applications and
5,560 malicious applications (see Table I).

We chose this algorithm for several reasons: the large
dataset which is publicly available, Drebin reported perfor-
mance is very good and the method is described well enough
in the paper to give us the possibility to replicate it. For more
details, please refer to [3].

With respect to BotFinder [27], the algorithm processes net-
work traces to build family-based malware behavior profiles.
These are later used for classification of new samples. We
chose BotFinder as second use case, as it is a fairly recent
work and it has been tested in the field with interesting results,
moreover extracting a non-conformity measure was relatively
straightforward and, finally, because the authors were very
kind to provide us with the same dataset as the one they used
for their own experiments (we refer to this dataset as Dataset-
B on Table III). Having the same dataset is indeed crucial
in order to have a meaningful comparison. As for BotFinder
algorithm itself, we had to re-implement it from scratch,
but [27] was detailed enough to let us build it, achieving
similar performances.

The algorithm leverages five features, which are extracted
from network flows in the captured botnet communications.
These are the average value of the time intervals between
two subsequent flows, the average duration of connections,
average number of source bytes and destination bytes per flow
and, finally, the Fast Fourier Transform to highlight periodic
communications. These features are then combined together
to obtain, once a new sample comes in, a score associated
to each family in the dataset. The score, referred to as γM
in [27], is the product of the quality of the matched cluster
of a malware family and the quality of the new sample. The
quality is given by a quality rating function based on the mean
and standard deviation of features.

The malware sample is labeled as belonging to the family
with the highest score. This score naturally serves as non-
conformity measure by inverting its sign (see § III-A). Before
labeling the sample, BotFinder implements a filtering step
that relies on an empirical threshold defined through iterative
experiments. In our assessment we decided to omit this step
as we are more interested in evaluating the scoring function

MICROSOFT MALWARE CLASSIFICATION CHALLENGE DATASET

Malware Samples Malware Samples

Ramnit 1541 Tracur 751
Lollipop 2478 Obfuscator.ACY 1228

Kelihos˙ver3 2942 Gatak 1013
Vundo 475 Kelihos˙ver1 398

TABLE II: Number of samples for each family used in the
Microsoft challenge

itself.
We are going to apply the selected algorithms to the dataset

used in [27] and a perturbed dataset. BotFinder’s dataset is
composed of 5 malware families, each one having a different
number of network traces (see Table III). In addition, we
introduce 5 new malware families (referred as Dataset-C in
Table III) with wide range of numbers of network traces from 5
to 555, and combine them with BotFinder’s dataset to generate
the perturbed dataset totaling 10 families (see Table III).

The third algorithm we are going to evaluate comes from
the Microsoft Classification Challenge [11] on the Kaggle
platform 1. The website is a well known platform hosting a
wide range of data science related competitions, from image
processing to medical related topics to security challenges.
The Microsoft Malware Classification Challenge involves the
classification of 9 malware families by leveraging statistical
analysis of the disassembled binaries. In this study we decided
to include only 8 families in the evaluation, as the excluded
family has noticeably less samples than the others (10 to 100
times less).

The algorithm is described in [2]. The authors use the eX-
treme Gradient Boosting (XGBoost) as their machine learning
classification algorithm [26]. It’s based on gradient boost-
ing [21] and, like other boosting techniques, it combines
different weak prediction models to create a stronger one.
Particularly in their work, the authors use XGBoost with
decision trees.

As non-conformity measure, we select the probability of
one sample belonging to one class, with its sign inverted (since
probabilities are conformity scores).

All the datasets, Drebin’s and BotFinder’s and Kaggle’s
challenge, consist of labeled malware samples whose ground

1https://www.kaggle.com

DATASET-B DATASET-C
ORIGINAL DATASET PERTURBED DATASET

Malware Samples Malware Samples

Bifrose 51 Gammima 34
Sasfis 55 Hupigon 14

Blackenergy 62 Swizzor 117
Banbra 98 Tibs 555
Pushdo 46 Windefender 5

TABLE III: Number of samples for each family. Datasets used
by [27]
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Assigned label

Sample Malicious Benign Recall

Malicious 5132 428 0.92
Benign 297 123156 0.99

Precision 0.95 0.99

TABLE IV: Confusion matrix for [3] with original dataset

truth has been verified.
We would like to remark that the evaluations presented here

are just to demonstrate the validity of conformal evaluator and
not to criticize the cited works in any way.

A. Algorithm 1: Drebin

In this section we evaluate Drebin, described in [3]. The
algorithm achieves very good performance as shown on the
confusion matrix on Table IV.

Figure 2 shows the decision assessment (described in
§ IV-A) for [3]. Looking at correct choices, we can see
that the average algorithm credibility is around 0.5 and the
average algorithm confidence is over 0.9. This is considered
a very good result because when the average confidence
for the correct choices is high, it means that the samples
are usually very different from the wrong label, so we can
see that the algorithm takes the right decision with high
statistical evidence of correctness. A value around 0.5 for
average algorithm credibility is to be expected if most of the
samples are correctly labeled (due to mathematical properties
of conformal evaluator). For incorrect results, we can see the
average algorithm credibility is less than 0.2 and the average
algorithm confidence is very high, greater than 0.9. This again,
is a good result because even when the algorithm chooses a
wrong label for one sample, it’s poorly associated with that
label meaning that the algorithm has poor statistical evidence
for his choice, hence it is not completely able to tell apart the
right label from the wrong one, meaning that its error margin
is very small (see § IV-A).

A good separation between correctly identified and incor-
rectly identified samples, shows that the decision made by
the algorithm is most of the time far from the decision border,
where by “decision border” we mean the ideal (or real) border
where decisions switch from “A” to “B”.

Looking thoroughly at [3], the reasons for this good result
are threefold: the authors have a rather large dataset as ground
truth, binary classification problem is usually simpler than
multiclass classification and the method has strong scientific
foundations and it is well designed.

As you have gathered, Figure 2 gives us more information
than pure performance metrics. It is telling us that, based
on the quality of the results obtained, we are confident the
method is not strongly dependent on hidden choices or dataset
specific tweaks. Later on, we are going to perturb the dataset
to empirically confirm this statement.

Figure 3 reports the alpha assessment for Drebin. We
plot this assessment in a boxplot fashion to show details of

Assigned label
Sample Malicious Benign Recall

Malicious 2678 24 0.99
Benign 1 59999 0.99

Precision 0.99 0.99

TABLE V: Confusion matrix for [3] with perturbed dataset

the p-value distribution. On the left side, we can see that
some parts of the p-value distribution overlap, implying that
some malicious samples are not perfectly separated. From the
confusion matrix IV we can see that few malicious samples
are misclassified. From the pure knowledge of the confusion
matrix it is not possible to appreciate the quality of the
decisions as it is by looking at the plot of the alpha assessment.

Moreover, based on results of the alpha assessment for
benign samples, we do not observe any overfitting issues.
Particularly, for the benign samples, the p-values for the two
classes are quite different and the p-values to the malicious
class are condensed in the lower part of the scale. In this
case, the algorithm decision is strong and difficult to perturb
even by changing the underling dataset.

Results with perturbed dataset: To give credit to the results
obtained with the decision assessment, we rerun conformal
evaluator with a perturbed the dataset to check results con-
sistency against potential customized threshold or previous
dataset specific tweaks. The perturbed dataset is described on
Table I. Half of the malicious applications come from [31],
while the other half were kindly provided by McAfee. The
benign applications are a subset of the original Drebin’s
dataset.

In Figure 4, we can see the results of the decision assess-
ment for the perturbed Drebin’s dataset. The assessment shows
a similar behavior as the original approach, meaning that
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Fig. 2: Decision assessment for [3] with the original dataset.
Very good results: correct classifications have a high confi-
dence, while incorrect classifications have low credibility and
high confidence. An algorithm credibility value of 0.5 for
correct choice is to be expected if most of the samples are
correctly labeled.
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the results do not change when the underlying dataset does.
This fact experiment empirically confirms that the decisions
made by the algorithm are consistent across different datasets
and hence not influenced by dataset customization and, more
importantly, that the algorithm does not over-fit data. Even
without an additional dataset, the information provided by the
decision assessment alone (Figure 2) raises the reliability of
the drawn conclusions (i.e., Drebin is well designed algorithm)
to an higher level of confidence. The alpha assessment for
the perturbed dataset 5 shows that the benign samples are
again well distinguished from the malicious ones, with similar
considerations as before.

B. Algorithm 2: BotFinder

In this section we evaluate BotFinder, described in [27]. On
Table VI, we can see how BotFinder performs according to
traditional error metrics such as recall and precision. Looking
at these performance metrics we can see that for Banbra and
Bifrose, the algorithm works quite well, while we cannot say
the same for Blackenergy and Sasfis, which have the lowest
recall values.

The decision assessment (Figure 6) helps in understanding
whether the algorithm would work with similar performances
with other datasets or not.

The intuition is that if the average algorithm confidence and
credibility from correct and wrong choice are well separated
(i.e., different enough, as with Drebin, § V-A) then the
algorithm performance is most likely to be consistent. Without
a good separation, in a situation where the algorithm has a
good performance but correct and incorrect classifications are
not well separated, results will most likely change if another
dataset is used.

The reason behind this is that traditional metrics merely
measure the outcome of a given algorithm without taking
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Fig. 3: Alpha assessment for [3] with the original dataset. Very
good results achieved by the algorithm: the benign samples
are well separated from the malicious ones especially for
the benign samples. White dots represent the average values,
white lines represent the median values, red crosses represent
outliers.
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Fig. 4: Decision assessment for [3] with a perturbed dataset.
We have again very good results: correct classifications have
a high confidence, while incorrect classifications have low
credibility and high confidence.

into consideration the quality of said outcome. They do not
take into account how good the classification is. Even with
high precision and recall, we could have “lucky” decisions,
meaning that the decisions taken are very close to the wrong
ones even though still right. With a slight variation in the
ground truth, the algorithm decision might be biased towards
a wrong category. This means the method is not strong against
variations.

Looking at Bifrose family (see Figure 6), the average algo-
rithm credibility and confidence for correct decision indicates
that when the algorithm chooses the correct label, the sample
is very similar to the family (high algorithm credibility) but
it is also similar to other families (low algorithm confidence).
This is indeed not a good sign as a slight change in the data
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Fig. 5: Alpha assessment for [3] with the perturbed dataset.
Very good results achieved by the algorithm: the p-values for
benign samples are well separated. The p-values for malicious
are once again not really well separated but the p-values for the
benign class are very concentrated in the low part of the scale.
White dots represent the average values, white lines represent
the median values, red crosses represent outliers.
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would most likely change the results of the algorithm as well.
For the same family, the average credibility and confidence

for incorrect decision, shows that algorithm is quite sure
about this “wrong” decision (high credibility and very high
confidence). For an incorrect decision, these two facts indicate
that we are in a situation where families overlap, hence the
line distinguishing them is very thin. To improve the algorithm
we therefore need to analyze those overlapping families to
understand what to change in order to mark a more sharp
border (if this is even possible). This analysis can be done
with the alpha assessment which is discussed later on.

With respect to Banbra family, the decision assessment
shows that the samples are very similar to their own family
(high credibility) but they are also similar to others families
(low confidence). Even in this case, changing the underlying
ground truth samples, will lead to high variation in the results.
However the good recall achieved by the algorithm, is due to
the fact that for incorrect results the samples have a really low
credibility meaning that it is very unlikely for the algorithm
to mistake a Banbra’s sample for another family. It should be
clear how recall is related to the average algorithm credibility
and confidence for incorrect decision. The more their values
deviates from good ones, like the one observed in [3], the
more likely we will observe a poor recall.

With the sole knowledge of Table VI, it is difficult to draw
conclusions or to reason about where to look to improve the
classification. This is because traditional evaluation metrics
only reports performances and do not try to explain what is
happening under the hood.

Looking at the Alpha assessment, Figure 7, we can under-
stand why some families have good performance while others
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Fig. 6: Decision assessment for [27] with dataset-B. All the
families show a poor separation between correct and incor-
rect results. This is symptom of weaknesses against dataset
modification.

Assigned label
Sample Bifrose Sasfis Blackenergy Banbra Pushdo Recall

Bifrose 41 6 0 4 0 0.80
Sasfis 1 18 32 1 3 0.33
Blackenergy 1 21 30 0 10 0.48
Banbra 0 3 8 87 0 0.89
Pushdo 2 1 13 0 30 0.65

Precision 0.91 0.37 0.36 0.95 0.7

TABLE VI: Confusion matrix for [27] with Dataset-B

do not, and if the algorithm is overfitting the data. For example,
from the average p-values for Banbra, we can see that even if
there is no misclassification with the Bifrose family (from the
confusion matrix), the p-values of Banbra’s samples for the
Bifrose hypothesis (Figure 7, Banbra’s samples, first column)
are high and close to the p-values of Banbra. This fact indicates
that it is unlikely that by perturbing the dataset, the results will
be comparable.

Looking at the confusion matrix, the situation of Pushdo’s
samples is similar, i.e., the misclassification of this family to
Banbra is null. If we take a look at the alpha assessment, we
can see that Pushdo’s samples p-values with respect to the
Banbra family are different from the one of Pushdo (implying
that it is very difficult to mistake Pushdo for Banbra). With
the last two examples, we started from the same situation in
the confusion matrix (i.e., same no misclassification for a par-
ticular family) and we ended up having very different quality
observations as we can see from the alpha assessment. This
shows how traditional metrics are ill-suited for understanding
the quality of a given machine learning task and may therefore
be misleading in deploying it in real-world settings.

Regarding recall we can see that when one or more families
starts to interfere with one another (look at the samples by
family, e.g. first 5 columns and second five columns) quite
heavily, the recall of this family drops. From Figure 7 we
can see that Sasfis, Bifrose and Pushdo, are subject to heavy
interference, making it difficult to identify them. Singling out
interfering families can help to focus the attention into the
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Fig. 7: Alpha assessment for [27] with dataset-B representing
interfering families: white dots represent the average values,
white lines represent the median values, red crosses represent
outliers.
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Assigned label

Bifrose Sasfis Blackenergy Banbra Pushdo Gammima Hupigon Swizzor Tibs Windefender Recall

Bifrose 26 1 0 0 0 2 2 3 17 0 0.51
Sasfis 1 11 27 0 1 2 1 5 6 1 0.20
Blackenergy 0 9 27 0 7 3 0 6 10 0 0.44
Banbra 0 0 2 30 0 15 39 3 1 8 0.31
Pushdo 2 0 3 0 29 3 0 0 9 0 0.63
Gammima 1 3 5 2 0 9 0 8 6 0 0.26
Hupigon 1 0 0 1 0 0 8 1 0 3 0.57
Swizzor 1 1 36 0 0 0 37 35 0 7 0.30
Tibs 22 66 109 0 38 59 4 34 218 5 0.39
Windefender 0 0 0 0 0 0 3 2 0 0 0

Precision 0.48 0.12 0.13 0.91 0.39 0.10 0.09 0.36 0.82 0

TABLE VII: Confusion matrix for BotFinder with Dataset-B
and Dataset-C together

most problematic ones, sparing time that would otherwise be
spent in a full analysis.

1) Results with perturbed dataset: We are going now to
perturb the dataset of [27] using as ground truth the families
in Table III. Table VII shows the confusion matrix and the
performance matrix respectively. We can clearly see that the
results obtained with the new dataset are very bad especially
regarding Swizzor and Tibs families. Looking these results,
we can reach the same conclusion that the decision assessment
in Figure 6 suggested already with only the original dataset,
i.e., without a good separation between correct and incorrect
classifications, the results with a new dataset will dramatically
change.

For completeness, we show the alpha assessment in Fig-
ure 16 included in Appendix A to show the heavy family
interference.

C. Algorithm 3: Microsoft Malware Classification Challenge

In this section we are going to evaluate one of the algorithms
proposed as a solution for the Kaggle’s Microsoft Malware
Classification Challenge described in [2]. Table VIII reports
the confusion matrix, precision and recall of the algorithm
while Figure 8 shows the decision assessment. For the few
misclassifications reported, we can see that the confidence is
very low meaning that there was at least another family very
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Fig. 8: Decision assessment for Microsoft Challenge algo-
rithm: poor confidence for correct choices indicates the sam-
ples are similar to other families, poor confidence for incorrect
choices is desirable but high credibility for incorrect choices
it is not.

Assigned label
Sample Ramnit Lollipop Kelihos˙ver3 Vundo Tracur Kelihos˙ver1 Obfuscator.ACY Gatak Recall

Ramnit 768 0 0 0 0 1 1 0 0.99
Lollipop 1 1236 0 0 0 1 1 0 0.99
Kelihos˙ver3 0 0 1471 0 0 0 0 0 1
Vundo 0 0 0 236 0 0 1 0 0.99
Tracur 1 0 0 0 369 1 3 1 0.99
Kelihos˙ver1 1 0 0 0 1 196 1 0 0.99
Obfuscator.ACY 4 0 0 1 0 0 607 2 0.99
Gatak 0 0 0 0 1 1 2 502 0.99

Precision 0.99 1 1 0.99 0.99 0.99 0.99 0.99

TABLE VIII: Confusion matrix for the Microsoft Challenge

close to the chosen one. It is interesting to note that even if
the average credibility for correct choices is high (close to 1),
the confidence on that choices is on average close to 0.4. This
indicates that in general there are other families are not that
much dissimilar to the correct one. However the disparity is
still high enough not to pose serious classification problems
(i.e. one minus the lowest confidence is still lower than the
lowest credibility).

Looking at the confusion matrix, we can see that the
performance of the algorithm regarding Kelihos˙ver3 and Ob-
fuscator.ACY are similar. From a quality perspective instead
(see Figure 10), the two families have different performances.
Kelihos˙ver3 family has p-values much higher than the inter-
fering families, which are very low with some outliers (see
Kelihos˙ver3’s samples boxplots). For Vundo instead, the p-
values of interfering families are closer to the correct one.
These facts, spotted by the alpha assessment only, indicates
that the identification of the Kelihos˙ver3 samples will be
similar when the underling ground truth change.

VI. DISCUSSION

It is widely known among the machine learning and security
community, that assessing the effectiveness of an approach
is not a solved problem (see § II). Throughout this paper,
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Fig. 9: Decision assessment for [27] with dataset-B and
dataset-C: perturbing the dataset the results dramatically
change.
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we have shown how conformal evaluator new metrics can
be used to assess consistency across different datasets, when
such results are good as for Drebin in § V-A. Conversely
we have also shown how apparently good results, according
to traditional metrics, can be identified as troublesome (see
§ V-B). Moreover, as shown in V, traditional metrics can hide
critical situations, (e.g., samples classified correctly by chance)
which are otherwise unearthed by CE metrics. Specifically,
conformal evaluator can help in identifying possible areas
of improvement by narrowing down the problem to mutual
interfering classes.

There are alternative methods that might unhortodoxely be
used to look for inter-class interference, these are dimensional-
ity reduction algorithms e.g. PCA [13] (Principal Component
Analysis), t-SNE [29] (t-distributed stochastic neighbor em-
bedding), LDA [12] (Linear discriminant analysis) or SOM [1]
(self organizing maps). They leverage sample distribution to
compute a new space that tries to maximize the distance (with
different techniques) between the samples, or to project them
onto an orthogonal feature space.

Although, these techniques might seem quite effective, they
suffer from the following drawbacks:

• Space complexity grows exponentially with the number
of features and samples (while CE on the other hand, is
not significantly affected by it).

• The decision step made by the algorithm is not taken into
account during the evaluation hence conclusions based
on these methods might be misleading, as shown later on
with an example.

• These techniques can operate on different space trans-
formations with respect the ones used by the evaluated
algorithm.

• The evaluation is limited to subjective visual inspection,

while CE provides precise objective qualitative metrics.
Moreover, dimensionality reduction techniques are often

used at early stages of the algorithm development process and
dropped later and hence not even used in the final decision
process. CE on the other hand, evaluates the final decision of
the algorithm, taking into account all the operations happening
within it.

We would like to remark that CE does not replace these
methods, as they are usually part of the algorithm development
process, however in order to have a comprehensive evaluation,
the role of the algorithm must be taken into consideration.

We decided to provide evidence of the aforementioned
limitations by applying PCA and t-SNE (as they are most
spread among the security community) to Algorithm 1 (§ V-A)
and Algorithm 2 (§V-B).

A. Algorithm 1: PCA and t-SNE Limitations
Applying PCA to Drebin to represent its features in a 2D

or 3D plot is of no use; the original features set is composed
by more than 200K features and, after PCA, the variance
expressed by keeping the 2 most variance-preserving features
is less than 10% and less then 14% when considering 3
features. It is clear that every possible conclusions based on
such plots would have no relevance.

With respect to the t-SNE analysis, this is still computa-
tionally intensive. In order to execute it we had to reduce
the number of features to 1K. To choose meaningful features
we performed t-SNE on the 1K most variance-preserving
features output by PCA, this fact alone already shows a
serious limitation in using t-SNE. Figure 11 shows t-SNE plot
performed on a subset of 73.5K samples of the original 120K
Drebin dataset samples. Particularly, the subset is composed of
70k benign apps and 3.5k malicious ones, with a ratio of 1:20
(original ratio 1:25). We decided to plot only a part of the
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Fig. 10: Alpha assessment for the Microsoft classification challenge: from this picture we can see that quality of the decision
taken by the algorithm. Behind very good results seen on the confusion matrix, the quality of those results is in general not
optimal.
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Fig. 11: t-SNE representation of Drebin dataset on 70k benign
samples and 3.5k malicious samples with 1k features reduced
with PCA. The malicious samples are superimposed over the
benign ones, malicious apps are mixed with benign apps.

original dataset since we were interested in looking at how
much benign and malicious apps are separated, furthermore
the computational complexity of t-SNE increases with the
square of the number of samples, making the analysis of large
datasets computationally expensive. From Figure 11 we can
clearly see that malicious applications are indistinguishable
from benign ones2 and zooming in the plot highlights even
more how each malicious application is surrounded by many
benign ones. We might even come to the wrong conclusion
that the features used in the algorithm are not good enough to
distinguish between malicious and benign applications since
the interference between the two is very high.

Without the limitations imposed by these techniques, as
pointed in § V-A, conformal evaluator shows instead that the
synergy between features and the algorithm produces very
limited interference between benign and malicious samples.

B. Algorithm 2: PCA and t-SNE Limitations

Differently from Drebin, BotFinder has a very low number
of features, hence PCA and t-SNE can be performed over the
whole original dataset. Figures 12 and 13 shows the 2D plots
for PCA and t-SNE respectively. Figure 12 shows that the use
of PCA in the analysis of BotFinder features is ineffective.
Most of the families are close to each other, concentrated in a
small portion of the space and mixed together so that it seems
difficult to tell families apart.

The t-SNE projection is shown in Figure 13. From the plot
it seems that Banbra is isolated in one cluster. For the other
families, some small clusters can be identified even if most
of them are mixed together. Following the t-SNE projection,
seems that the chosen features might be a good starting point to

2in the plot, malicious apps ore superimposed over benign apps, otherwise
they would not be visible.
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Fig. 12: Zoomed part of PCA representation of BotFinder
dataset. From this view we can see that are few clusters of
samples are isolated from the others but the vast majority is
not well separated.

separate the families. On the other hand, our analysis on § V-B
shows that families are very much interfering each others.

Quantifying the amount of family interference by looking
at PCA and t-SNE only is quite difficult. This is also due
to the fact that to perform an analytic comparison using t-
SNE and PCA, one needs to choose an algorithm that is
able to correctly group together the samples of a family (e.g.,
a clustering algorithm). Clearly the choice of the algorithm
already influences the outcome of the analysis, furthermore
we feel like we are going around in circles (to evaluate
a classification/clustering algorithm we have to choose a
classification/clustering algorithm). This is why only a visual
evaluation of the figures is wort to discuss. Of course visual
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Fig. 13: t-SNE representation of BotFinder dataset- B. Banbra
seems isolated in one cluster while for the other families
some small clusters can be identified, nevertheless remaining
samples are mixed together.
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Fig. 14: t-SNE projection of the features used in the Microsoft
challenge: families appear to be well separated from the others
in the outer parts of the figure while in the middle they seems
mixed together.

evaluation is subject to personal interpretation and could not
be conveyed uniformly to the community.

With CE instead, we enable the evaluation of the actual
algorithm under quantifiable and objective measures.

C. Algorithm 3: PCA and t-SNE Limitations

From the t-SNE projection of the features extracted for the
Microsoft challenge (Figure 14), we can see that some of the
classes are well separated from the others, while other classes
seems to be mixed together. From this picture it’s difficult
to imagine a confusion matrix with so few misclassification
as the one that we get in Table VIII. Even in this case, the
algorithm plays an important role in the classification, and
hence excluding it from the evaluation is not ideal.

As for PCA, the features extracted and plotted in Figure 15
retain in total 99.99% of the variance (i.e., are reliable as much
as the original features). As we can see, the family Ramnit has
the most of the variance in the features. Not surprisingly, even
PCA is not ideal to fully evaluate the features.

D. Final Remarks

Following the discussion on the limitations of dimensional-
ity reduction techniques, we have shown how these can lead
to wrong conclusions if you don’t consider the algorithm
altogether with the features. Particularly, Algorithm 1 bad
results shown on t-SNE are overturned when considering the
algorithm. Conversely, Algorithm 2 apparently good results
shown by t-SNE leads to very poor results when bringing the
algorithm into the picture. As for Algorithm 3, the analyses are
more promising, however drawing a precise and quantifiable
conclusion is not as direct as we might think. For these
reasons, the algorithm plays an important role and hence
cannot be dismissed during the evaluation.

VII. LIMITATIONS

Throughout the paper we have explained the benefits of
using conformal evaluator by showing how it can be used
to assess the quality of malware classification and clustering
algorithms. However conformal evaluator has also its draw-
backs, which we outline next along with possible ways to
address them.

The main limitation consists in the fact that in order to
apply conformal evaluator to any machine learning technique,
the latter needs to have a similarity function, or a similar
concept, that can be shaped as a non-conformity measure.
However limiting this might seem, conformal evaluator can
still help in evaluating stages of a larger process, that relies
on methods based on a similarity function. For instance,
FIRMA [20] relies on token-set payload signatures to identify
malware. This is a found/not-found classification approach that
cannot directly be translated into a non-conformity measure.
Nevertheless, FIRMA internally relies on clustering techniques
whose quality could be assessed through conformal evaluator.
There are also other approaches where the application of
conformal evaluator seems not possible or at least very com-
plex. In [15], for example, the authors use a locality sensitive
hashing algorithm to tell whether two malware samples are
similar. This algorithm cannot be directly translated into a non-
conformity measure, because its basic theory relies on some
specific distance functions between pairwise samples, that are
translated into hash functions. Still, with some effort, the
algorithm could be converted into a non-conformity measure
(i.e., distance from one group to one element). This is indeed
an interesting area to explore further in the future.

Another area of concern refers to the computational com-
plexity of conformal evaluator. The underling machine learn-
ing algorithm, conformal predictor, used by conformal eval-
uator is computationally expensive. For each sample z in a
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Fig. 15: 2D PCA projection of the features used in the Mi-
crosoft challenge: Ramnit family retains most of the variance
while the other families are concentrated on small portion of
the graph.
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class c ∈ C, the production of a p-value requires to compute
a non-conformity measure for every element in the whole
dataset. This can further be exacerbated by non-conformity
measures that rely on distances that are complex to compute.
For instance, BotFinder [27] builds one or more models to
profile malware behaviors, and then uses each model as a part
in the computation non-conformity measure.

The computational complexity in relation to the number
of the times that the non-conformity measure needs to be
computed is expressed in Equation 3:

O(CN2) (3)

Here N represents the total number of samples and C
represent the number of classes.

To speedup the operations, most of the time we can compute
a whole set of non-conformity scores in one single algorithm
run. For example SVM used in [3] can directly supply the
total non-conformity scores for the calculation of one p-value
in only one run of the algorithm, thus reducing Equation 3
into Equation 4:

O(CN) (4)

To further speed up the process, some algorithms treat each
class separately. For example [27] uses a separate model for
each class. In this case, it’s useless to re-run the algorithm for
all the classes and we can make it run just for the class that
is currently under analysis.

To have a concrete example, let’s focus on a dataset com-
posed by 2000 samples and 10 classes. One single run of the
algorithm will require 10 minutes. The overall time needed
for the evaluation will be then (by Equation 4):

2000 ∗ 10 = 20000 minutes ≈ 13 days + 22 hours

Waiting this much might not be optimal for some situations
where one does not simply have the luxury to wait. For this
reason we take advantage of the fully parallelizable calculation
process speeding up the operation.

If we distribute the operation over for example just 8
processes, (e.g., a standard hyper-threaded CPU), the estimated
time already drops to:

20000 minutes/8 ≈ 2 days

Throughout our experiments with [3], which has a rather
large dataset (≈ 129K samples over ≈ 200K features for
each sample) the analysis took 18 days and 2 hours with the
optimized complexity with a standard i7 CPU with 4 cores/8
threads dedicated to the evaluation. The analysis was also run
on a high-end Xeon CPU, with 23cores/46 threads, and took
approximately 3 days.

Regarding memory complexity and consumption, we have
not noticed any difficulties to handle the workload by a
standard desktop workstation with 16 GB of RAM, as the
evaluation process took around 8 GB of RAM.

To further speedup the evaluation, a potential solution to the
complexity requirements of conformal predictor has recently

been addressed by the machine learning community. They
propose an alternative to the traditional conformal predictor
which is known as inductive conformal predictor (ICP) [6].
ICP divides the training set into proper training set and
calibration set. Only the calibration set is then used to compute
p-values during the clustering or classification steps, which
relaxes considerably the computational resources required by
traditional conformal predictor.

Even if optimizations can be put in place to reduce the
computational complexity of conformal predictor, we want to
stress the fact that our framework is meant for evaluation pur-
poses only, hence for an off-line scenario, when the algorithm
is not yet deployed in the field. For this reason performance
optimizations are not a primary issue for us and are not in the
scope of this work.

VIII. CONCLUSIONS

Assessing the validity of malware clustering and classifi-
cation approaches has always proven difficult. Researchers
have empirically shown that traditional metrics fall short
of assessing the actual quality of a classification/clustering
methodology. To address such shortcomings, we have pre-
sented conformal evaluator, an evaluation framework built
around conformal predictor, a machine learning algorithm
originally designed for tailoring classification tasks. Within
conformal evaluator, we proposed two novel analyses, which
are able to evaluate similarity-based classification and cluster-
ing algorithms with respect to their own decisions and against
the data set itself. To this end, such analyses are built on top of
algorithm confidence and credibility jointly which ultimately
enable to assess whether the similarity function underpinning
such machine learning approaches is poorly designed or badly
handled.

We have demonstrated the usage of conformal evaluator
through three malware detection and classification algorithms
belonging to three different areas (i.e. botnet network commu-
nication, windows and android malware), and we have shown
how apparently good results, according to traditional metrics,
can result in inconsistent performances, according to confor-
mal evaluator metrics. Additionally, we have demonstrated the
robustness of the conformal evaluator results by running the
same tests on different datasets.

By building tools that allow us to study and investigate the
problem in a more comprehensive and scientific manner, we
realize that we are merely opening a whole new Pandora’s
Box; our hope is that we might stimulate researchers to
increase their efforts in the same direction hence bringing more
insights than merely numerical results.

Our ultimate desire is to marry the machine learning and the
systems security community to provide a toolkit to the latter to
understand the subtle implications of machine learning-based
techniques (e.g., choosing a similarity measure over another),
and better support their claims.
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IX. AVAILABILITY

Our library implementation of conformal evaluator as a
technique to understand clustering and classification results
is available at www.example.com3.
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